Abstract
Oxidative stress-alleviating and inflammation-mediatory functions of hydrogen sulfide were reported to be key features of its biological actions. However, the underlying molecular mechanisms of these biological observations are not fully understood. In conditions where sulfide was proposed to be protective against oxidative stress- or inflammation-induced tissue damage (e.g., reperfusion injury, atherosclerosis, vascular inflammation), the reactive oxidant-producing function of a key neutrophil enzyme, myeloperoxidase, was reported to be a protagonist on the detrimental side. We recently described favorable interactions between sulfide and myeloperoxidase and proposed that the potent inhibition of myeloperoxidase activities could contribute to sulfide’s beneficial functions in a number of cardiovascular pathologies. Our chapter is dedicated to aid future studies and drug development endeavors in this area by providing methodological guidance on how to assess the inhibitory potential of sulfide on myeloperoxidase enzymatic activities in isolated protein systems, in neutrophil homogenates, and in live neutrophil preparations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- DMF:
-
N,N-Dimethylformamide
- DMSO:
-
Dimethyl sulfoxide
- DPBS:
-
Dulbecco’s phosphate buffered saline
- DTNB:
-
5,5-Dithio-bis-(2-nitrobenzoic acid)
- DTPA:
-
Diethylenetriaminepentaacetic acid
- EDTA:
-
Ethylenediaminetetraacetic acid
- HBSS:
-
Hank’s Balanced Salt Solution
- HRP:
-
Horseradish peroxidase
- HTAB:
-
Hexadecyltrimethylammonium bromide
- MPO:
-
Myeloperoxidase enzyme
- NOX2:
-
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 enzyme-complex
- PBS:
-
Phosphate-buffered saline
- PMA:
-
Phorbol 12-myristate 13-acetate
- RFU:
-
Relative fluorescence unit
- ROS:
-
Reactive oxygen species
- SOD:
-
Superoxide dismutase
- TMB:
-
3,3′,5,5′-Tetramethylbenzidine
- UV-Vis:
-
Ultraviolet-visible
References
Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6(11):917–935. https://doi.org/10.1038/nrd2425
Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92(2):791–896. https://doi.org/10.1152/physrev.00017.2011
Kimura H (2014) Production and physiological effects of hydrogen sulfide. Antioxid Redox Signal 20(5):783–793. https://doi.org/10.1089/ars.2013.5309
Wagner F, Asfar P, Calzia E et al (2009) Bench-to-bedside review: hydrogen sulfide—the third gaseous transmitter: applications for critical care. Crit Care 13(3):213. https://doi.org/10.1186/cc7700
Jha S, Calvert JW, Duranski MR et al (2008) Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling. Am J Physiol Heart Circ Physiol 295(2):H801–H806. https://doi.org/10.1152/ajpheart.00377.2008
Kimura Y, Goto Y, Kimura H (2010) Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 12(1):1–13. https://doi.org/10.1089/ars.2008.2282
Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18(10):1165–1167. https://doi.org/10.1096/fj.04-1815fje
Fu Z, Liu X, Geng B et al (2008) Hydrogen sulfide protects rat lung from ischemia-reperfusion injury. Life Sci 82(23–24):1196–1202. https://doi.org/10.1016/j.lfs.2008.04.005
Whiteman M, Cheung NS, Zhu YZ et al (2005) Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Bioph Res Commun 326(4):794–798. https://doi.org/10.1016/j.bbrc.2004.11.110
Laggner H, Muellner MK, Schreier S et al (2007) Hydrogen sulphide: a novel physiological inhibitor of LDL atherogenic modification by HOCl. Free Radic Res 41(7):741–747. https://doi.org/10.1080/10715760701263265
Nagy P (2015) Mechanistic chemical perspective of hydrogen sulfide signaling. Methods Enzymol 554:3–29. https://doi.org/10.1016/bs.mie.2014.11.036
Whiteman M, Armstrong JS, Chu SH et al (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem 90(3):765–768. https://doi.org/10.1111/j.1471-4159.2004.02617.x
Yonezawa D, Sekiguchi F, Miyamoto M et al (2007) A protective role of hydrogen sulfide against oxidative stress in rat gastric mucosal epithelium. Toxicology 241(1–2):11–18. https://doi.org/10.1016/j.tox.2007.07.020
Mani S, Li H, Untereiner A et al (2013) Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127(25):2523–2534. https://doi.org/10.1161/CIRCULATIONAHA.113.002208
Whiteman M, Haigh R, Tarr JM et al (2010) Detection of hydrogen sulfide in plasma and knee-joint synovial fluid from rheumatoid arthritis patients: relation to clinical and laboratory measures of inflammation. Ann N Y Acad Sci 1203:146–150. https://doi.org/10.1111/j.1749-6632.2010.05556.x
Elrod JW, Calvert JW, Morrison J et al (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA 104(39):15560–15565. https://doi.org/10.1073/pnas.0705891104
Nagy P, Palinkas Z, Nagy A et al (2014) Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim Biophys Acta 1840(2):876–891. https://doi.org/10.1016/j.bbagen.2013.05.037
Nagy P, Winterbourn CC (2010) Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem Res Toxicol 23(10):1541–1543. https://doi.org/10.1021/tx100266a
Palinkas Z, Furtmuller PG, Nagy A et al (2015) Interactions of hydrogen sulfide with myeloperoxidase. Br J Pharmacol 172:1516–1532. https://doi.org/10.1111/bph.12769
Winterbourn CC, Kettle AJ, Hampton MB (2016) Reactive oxygen species and neutrophil function. Annu Rev Biochem 85:765–792. https://doi.org/10.1146/annurev-biochem-060815-014442
Nussbaum C, Klinke A, Adam M et al (2013) Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal 18(6):692–713. https://doi.org/10.1089/ars.2012.4783
Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77(5):598–625. https://doi.org/10.1189/jlb.1204697
Nicholls SJ, Hazen SL (2005) Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol 25(6):1102–1111. https://doi.org/10.1161/01.ATV.0000163262.83456.6d
Stamp LK, Khalilova I, Tarr JM et al (2012) Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology (Oxford) 51(10):1796–1803. https://doi.org/10.1093/rheumatology/kes193
Heinecke JW (1997) Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis. Curr Opin Lipidol 8(5):268–274
Klebanoff SJ (1968) Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol 95(6):2131–2138
Furtmuller PG, Burner U, Obinger C (1998) Reaction of myeloperoxidase compound I with chloride, bromide, iodide, and thiocyanate. Biochemistry 37(51):17923–17930
vanDalen CJ, Whitehouse MW, Winterbourn CC et al (1997) Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J 327:487–492
Furtmuller PG, Zederbauer M, Jantschko W et al (2006) Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 445(2):199–213. https://doi.org/10.1016/j.abb.2005.09.017
Bradley PP, Priebat DA, Christensen RD et al (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78(3):206–209
Heinecke JW, Li W, Daehnke HL 3rd et al (1993) Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J Biol Chem 268(6):4069–4077
Heinecke JW, Li W, Francis GA et al (1993) Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest 91(6):2866–2872. https://doi.org/10.1172/JCI116531
Vasas A, Doka E, Fabian I et al (2015) Kinetic and thermodynamic studies on the disulfide-bond reducing potential of hydrogen sulfide. Nitric Oxide 46:93–101. https://doi.org/10.1016/j.niox.2014.12.003
Josephy PD, Eling T, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3’,5’-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem 257(7):3669–3675
Marquez LA, Dunford HB (1997) Mechanism of the oxidation of 3,5,3’,5’-tetramethylbenzidine by myeloperoxidase determined by transient- and steady-state kinetics. Biochemistry 36(31):9349–9355. https://doi.org/10.1021/bi970595j
Kettle AJ, Winterbourn CC (1994) Assays for the chlorination activity of myeloperoxidase. Methods Enzymol 233:502–512
Auchere F, Capeillere-Blandin C (1999) NADPH as a co-substrate for studies of the chlorinating activity of myeloperoxidase. Biochem J 343:603–613. https://doi.org/10.1042/0264-6021:3430603
Dypbukt JM, Bishop C, Brooks WM et al (2005) A sensitive and selective assay for chloramine production by myeloperoxidase. Free Radic Biol Med 39(11):1468–1477. https://doi.org/10.1016/j.freeradbiomed.2005.07.008
Barcia JJ (2007) The Giemsa stain: its history and applications. Int J Surg Pathol 15(3):292–296. https://doi.org/10.1177/1066896907302239
Amulic B, Cazalet C, Hayes GL et al (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489. https://doi.org/10.1146/annurev-immunol-020711-074942
Nauseef WM, Borregaard N (2014) Neutrophils at work. Nat Immunol 15(7):602–611. https://doi.org/10.1038/ni.2921
Peskin AV, Winterbourn CC (2001) Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic Biol Med 30(5):572–579
Levine RL, Mosoni L, Berlett BS et al (1996) Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci USA 93(26):15036–15040. https://doi.org/10.1073/pnas.93.26.15036
Pattison DI, Davies MJ (2001) Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol 14(10):1453–1464
Olson KR, Gao Y, DeLeon ER et al (2017) Catalase as a sulfide-sulfur oxido-reductase: an ancient (and modern?) regulator of reactive sulfur species (RSS). Redox Biol 12:325–339. https://doi.org/10.1016/j.redox.2017.02.021
Boyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 97:77–89
Quinn MT, DeLeo FR, Bokoch GM (2007) Neutrophil methods and protocols. Preface. Methods Mol Biol 412:vii–viii
Kaplan SS, Basford RE, Jeong MH et al (1994) Mechanisms of biomaterial-induced superoxide release by neutrophils. J Biomed Mater Res 28(3):377–386. https://doi.org/10.1002/jbm.820280313
Chang S, Popowich Y, Greco RS et al (2003) Neutrophil survival on biomaterials is determined by surface topography. J Vasc Surg 37(5):1082–1090. https://doi.org/10.1067/mva.2003.160
Dooley DC, Simpson JF, Meryman HT (1982) Isolation of large numbers of fully viable human-neutrophils—a preparative technique using percoll density gradient centrifugation. Exp Hematol 10(7):591–599
Sivak A, Van Duuren BL (1971) Cellular interactions of phorbol myristate acetate in tumor promotion. Chem Biol Interact 3(6):401–411
Van Duuren BL, Sivak A, Segal A et al (1973) Dose-response studies with a pure tumor-promoting agent, phorbol myristate acetate. Cancer Res 33(9):2166–2172
Nagy P, Kettle AJ, Winterbourn CC (2010) Neutrophil-mediated oxidation of enkephalins via myeloperoxidase-dependent addition of superoxide. Free Radic Biol Med 49(5):792–799. https://doi.org/10.1016/j.freeradbiomed.2010.05.033
Nagy P, Kettle AJ, Winterbourn CC (2009) Superoxide-mediated formation of tyrosine hydroperoxides and methionine sulfoxide in peptides through radical addition and intramolecular oxygen transfer. J Biol Chem 284(22):14723–14733. https://doi.org/10.1074/jbc.M809396200
Kettle AJ, Winterbourn CC (1989) Influence of superoxide on myeloperoxidase kinetics measured with a hydrogen peroxide electrode. Biochem J 263(3):823–828
Kettle AJ, Anderson RF, Hampton MB et al (2007) Reactions of superoxide with myeloperoxidase. Biochemistry 46(16):4888–4897. https://doi.org/10.1021/bi602587k
Gallin JI, Seligmann BE (1984) Neutrophil chemoattractant fMet-Leu-Phe receptor expression and ionic events following activation. Contemp Top Immunobiol 14:83–108
Timm M, Saaby L, Moesby L et al (2013) Considerations regarding use of solvents in in vitro cell based assays. Cytotechnology 65(5):887–894. https://doi.org/10.1007/s10616-012-9530-6
Acknowledgments
This work was supported by The Hungarian National Science Foundation (OTKA; grant No.: K 109843, KH17_126766 and K18_129286 for P.N. and K 112333 for J.B.) and the National Institutes of Health (grant No.: R21AG055022-01 for P.N.). Financial supports from the Hungarian Government in a GINOP-2.3.2-15-2016-00043 project (for J.B. and P.N.) and from the European Union in a European Regional Development Fund are also acknowledged. The research group is supported by the Hungarian Academy of Sciences (11003). P.N. is a János Bolyai Research Scholar of the Hungarian Academy of Sciences. Dojindo Molecular Technologies Inc. is greatly acknowledged for their kind support of high-quality chemical supplies.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Garai, D., Pálinkás, Z., Balla, J., Kettle, A.J., Nagy, P. (2019). Measurements for Sulfide-Mediated Inhibition of Myeloperoxidase Activity. In: Bełtowski, J. (eds) Vascular Effects of Hydrogen Sulfide. Methods in Molecular Biology, vol 2007. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9528-8_14
Download citation
DOI: https://doi.org/10.1007/978-1-4939-9528-8_14
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-4939-9527-1
Online ISBN: 978-1-4939-9528-8
eBook Packages: Springer Protocols