Skip to main content

Measurements for Sulfide-Mediated Inhibition of Myeloperoxidase Activity

  • Protocol
  • First Online:
Vascular Effects of Hydrogen Sulfide

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2007))

  • 963 Accesses

Abstract

Oxidative stress-alleviating and inflammation-mediatory functions of hydrogen sulfide were reported to be key features of its biological actions. However, the underlying molecular mechanisms of these biological observations are not fully understood. In conditions where sulfide was proposed to be protective against oxidative stress- or inflammation-induced tissue damage (e.g., reperfusion injury, atherosclerosis, vascular inflammation), the reactive oxidant-producing function of a key neutrophil enzyme, myeloperoxidase, was reported to be a protagonist on the detrimental side. We recently described favorable interactions between sulfide and myeloperoxidase and proposed that the potent inhibition of myeloperoxidase activities could contribute to sulfide’s beneficial functions in a number of cardiovascular pathologies. Our chapter is dedicated to aid future studies and drug development endeavors in this area by providing methodological guidance on how to assess the inhibitory potential of sulfide on myeloperoxidase enzymatic activities in isolated protein systems, in neutrophil homogenates, and in live neutrophil preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DMF:

N,N-Dimethylformamide

DMSO:

Dimethyl sulfoxide

DPBS:

Dulbecco’s phosphate buffered saline

DTNB:

5,5-Dithio-bis-(2-nitrobenzoic acid)

DTPA:

Diethylenetriaminepentaacetic acid

EDTA:

Ethylenediaminetetraacetic acid

HBSS:

Hank’s Balanced Salt Solution

HRP:

Horseradish peroxidase

HTAB:

Hexadecyltrimethylammonium bromide

MPO:

Myeloperoxidase enzyme

NOX2:

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 enzyme-complex

PBS:

Phosphate-buffered saline

PMA:

Phorbol 12-myristate 13-acetate

RFU:

Relative fluorescence unit

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TMB:

3,3′,5,5′-Tetramethylbenzidine

UV-Vis:

Ultraviolet-visible

References

  1. Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6(11):917–935. https://doi.org/10.1038/nrd2425

    Article  CAS  Google Scholar 

  2. Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92(2):791–896. https://doi.org/10.1152/physrev.00017.2011

    Article  CAS  Google Scholar 

  3. Kimura H (2014) Production and physiological effects of hydrogen sulfide. Antioxid Redox Signal 20(5):783–793. https://doi.org/10.1089/ars.2013.5309

    Article  CAS  Google Scholar 

  4. Wagner F, Asfar P, Calzia E et al (2009) Bench-to-bedside review: hydrogen sulfide—the third gaseous transmitter: applications for critical care. Crit Care 13(3):213. https://doi.org/10.1186/cc7700

    Article  Google Scholar 

  5. Jha S, Calvert JW, Duranski MR et al (2008) Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling. Am J Physiol Heart Circ Physiol 295(2):H801–H806. https://doi.org/10.1152/ajpheart.00377.2008

    Article  CAS  Google Scholar 

  6. Kimura Y, Goto Y, Kimura H (2010) Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 12(1):1–13. https://doi.org/10.1089/ars.2008.2282

    Article  CAS  Google Scholar 

  7. Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18(10):1165–1167. https://doi.org/10.1096/fj.04-1815fje

    Article  CAS  Google Scholar 

  8. Fu Z, Liu X, Geng B et al (2008) Hydrogen sulfide protects rat lung from ischemia-reperfusion injury. Life Sci 82(23–24):1196–1202. https://doi.org/10.1016/j.lfs.2008.04.005

    Article  CAS  Google Scholar 

  9. Whiteman M, Cheung NS, Zhu YZ et al (2005) Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Bioph Res Commun 326(4):794–798. https://doi.org/10.1016/j.bbrc.2004.11.110

    Article  CAS  Google Scholar 

  10. Laggner H, Muellner MK, Schreier S et al (2007) Hydrogen sulphide: a novel physiological inhibitor of LDL atherogenic modification by HOCl. Free Radic Res 41(7):741–747. https://doi.org/10.1080/10715760701263265

    Article  CAS  Google Scholar 

  11. Nagy P (2015) Mechanistic chemical perspective of hydrogen sulfide signaling. Methods Enzymol 554:3–29. https://doi.org/10.1016/bs.mie.2014.11.036

    Article  CAS  Google Scholar 

  12. Whiteman M, Armstrong JS, Chu SH et al (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem 90(3):765–768. https://doi.org/10.1111/j.1471-4159.2004.02617.x

    Article  CAS  Google Scholar 

  13. Yonezawa D, Sekiguchi F, Miyamoto M et al (2007) A protective role of hydrogen sulfide against oxidative stress in rat gastric mucosal epithelium. Toxicology 241(1–2):11–18. https://doi.org/10.1016/j.tox.2007.07.020

    Article  CAS  Google Scholar 

  14. Mani S, Li H, Untereiner A et al (2013) Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127(25):2523–2534. https://doi.org/10.1161/CIRCULATIONAHA.113.002208

    Article  CAS  Google Scholar 

  15. Whiteman M, Haigh R, Tarr JM et al (2010) Detection of hydrogen sulfide in plasma and knee-joint synovial fluid from rheumatoid arthritis patients: relation to clinical and laboratory measures of inflammation. Ann N Y Acad Sci 1203:146–150. https://doi.org/10.1111/j.1749-6632.2010.05556.x

    Article  CAS  Google Scholar 

  16. Elrod JW, Calvert JW, Morrison J et al (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA 104(39):15560–15565. https://doi.org/10.1073/pnas.0705891104

    Article  Google Scholar 

  17. Nagy P, Palinkas Z, Nagy A et al (2014) Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim Biophys Acta 1840(2):876–891. https://doi.org/10.1016/j.bbagen.2013.05.037

    Article  CAS  Google Scholar 

  18. Nagy P, Winterbourn CC (2010) Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem Res Toxicol 23(10):1541–1543. https://doi.org/10.1021/tx100266a

    Article  CAS  Google Scholar 

  19. Palinkas Z, Furtmuller PG, Nagy A et al (2015) Interactions of hydrogen sulfide with myeloperoxidase. Br J Pharmacol 172:1516–1532. https://doi.org/10.1111/bph.12769

    Article  CAS  Google Scholar 

  20. Winterbourn CC, Kettle AJ, Hampton MB (2016) Reactive oxygen species and neutrophil function. Annu Rev Biochem 85:765–792. https://doi.org/10.1146/annurev-biochem-060815-014442

    Article  CAS  Google Scholar 

  21. Nussbaum C, Klinke A, Adam M et al (2013) Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal 18(6):692–713. https://doi.org/10.1089/ars.2012.4783

    Article  CAS  Google Scholar 

  22. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77(5):598–625. https://doi.org/10.1189/jlb.1204697

    Article  CAS  Google Scholar 

  23. Nicholls SJ, Hazen SL (2005) Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol 25(6):1102–1111. https://doi.org/10.1161/01.ATV.0000163262.83456.6d

    Article  CAS  Google Scholar 

  24. Stamp LK, Khalilova I, Tarr JM et al (2012) Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology (Oxford) 51(10):1796–1803. https://doi.org/10.1093/rheumatology/kes193

    Article  CAS  Google Scholar 

  25. Heinecke JW (1997) Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis. Curr Opin Lipidol 8(5):268–274

    Article  CAS  Google Scholar 

  26. Klebanoff SJ (1968) Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol 95(6):2131–2138

    Article  CAS  Google Scholar 

  27. Furtmuller PG, Burner U, Obinger C (1998) Reaction of myeloperoxidase compound I with chloride, bromide, iodide, and thiocyanate. Biochemistry 37(51):17923–17930

    Article  CAS  Google Scholar 

  28. vanDalen CJ, Whitehouse MW, Winterbourn CC et al (1997) Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J 327:487–492

    Article  CAS  Google Scholar 

  29. Furtmuller PG, Zederbauer M, Jantschko W et al (2006) Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 445(2):199–213. https://doi.org/10.1016/j.abb.2005.09.017

    Article  CAS  Google Scholar 

  30. Bradley PP, Priebat DA, Christensen RD et al (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78(3):206–209

    Article  CAS  Google Scholar 

  31. Heinecke JW, Li W, Daehnke HL 3rd et al (1993) Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J Biol Chem 268(6):4069–4077

    Article  CAS  Google Scholar 

  32. Heinecke JW, Li W, Francis GA et al (1993) Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest 91(6):2866–2872. https://doi.org/10.1172/JCI116531

    Article  CAS  Google Scholar 

  33. Vasas A, Doka E, Fabian I et al (2015) Kinetic and thermodynamic studies on the disulfide-bond reducing potential of hydrogen sulfide. Nitric Oxide 46:93–101. https://doi.org/10.1016/j.niox.2014.12.003

    Article  CAS  Google Scholar 

  34. Josephy PD, Eling T, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3’,5’-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem 257(7):3669–3675

    Article  CAS  Google Scholar 

  35. Marquez LA, Dunford HB (1997) Mechanism of the oxidation of 3,5,3’,5’-tetramethylbenzidine by myeloperoxidase determined by transient- and steady-state kinetics. Biochemistry 36(31):9349–9355. https://doi.org/10.1021/bi970595j

    Article  CAS  Google Scholar 

  36. Kettle AJ, Winterbourn CC (1994) Assays for the chlorination activity of myeloperoxidase. Methods Enzymol 233:502–512

    Article  CAS  Google Scholar 

  37. Auchere F, Capeillere-Blandin C (1999) NADPH as a co-substrate for studies of the chlorinating activity of myeloperoxidase. Biochem J 343:603–613. https://doi.org/10.1042/0264-6021:3430603

    Article  CAS  Google Scholar 

  38. Dypbukt JM, Bishop C, Brooks WM et al (2005) A sensitive and selective assay for chloramine production by myeloperoxidase. Free Radic Biol Med 39(11):1468–1477. https://doi.org/10.1016/j.freeradbiomed.2005.07.008

    Article  CAS  Google Scholar 

  39. Barcia JJ (2007) The Giemsa stain: its history and applications. Int J Surg Pathol 15(3):292–296. https://doi.org/10.1177/1066896907302239

    Article  Google Scholar 

  40. Amulic B, Cazalet C, Hayes GL et al (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489. https://doi.org/10.1146/annurev-immunol-020711-074942

    Article  CAS  Google Scholar 

  41. Nauseef WM, Borregaard N (2014) Neutrophils at work. Nat Immunol 15(7):602–611. https://doi.org/10.1038/ni.2921

    Article  CAS  Google Scholar 

  42. Peskin AV, Winterbourn CC (2001) Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic Biol Med 30(5):572–579

    Article  CAS  Google Scholar 

  43. Levine RL, Mosoni L, Berlett BS et al (1996) Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci USA 93(26):15036–15040. https://doi.org/10.1073/pnas.93.26.15036

    Article  CAS  Google Scholar 

  44. Pattison DI, Davies MJ (2001) Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol 14(10):1453–1464

    Article  CAS  Google Scholar 

  45. Olson KR, Gao Y, DeLeon ER et al (2017) Catalase as a sulfide-sulfur oxido-reductase: an ancient (and modern?) regulator of reactive sulfur species (RSS). Redox Biol 12:325–339. https://doi.org/10.1016/j.redox.2017.02.021

    Article  CAS  Google Scholar 

  46. Boyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 97:77–89

    CAS  Google Scholar 

  47. Quinn MT, DeLeo FR, Bokoch GM (2007) Neutrophil methods and protocols. Preface. Methods Mol Biol 412:vii–viii

    Google Scholar 

  48. Kaplan SS, Basford RE, Jeong MH et al (1994) Mechanisms of biomaterial-induced superoxide release by neutrophils. J Biomed Mater Res 28(3):377–386. https://doi.org/10.1002/jbm.820280313

    Article  CAS  Google Scholar 

  49. Chang S, Popowich Y, Greco RS et al (2003) Neutrophil survival on biomaterials is determined by surface topography. J Vasc Surg 37(5):1082–1090. https://doi.org/10.1067/mva.2003.160

    Article  Google Scholar 

  50. Dooley DC, Simpson JF, Meryman HT (1982) Isolation of large numbers of fully viable human-neutrophils—a preparative technique using percoll density gradient centrifugation. Exp Hematol 10(7):591–599

    CAS  Google Scholar 

  51. Sivak A, Van Duuren BL (1971) Cellular interactions of phorbol myristate acetate in tumor promotion. Chem Biol Interact 3(6):401–411

    Article  CAS  Google Scholar 

  52. Van Duuren BL, Sivak A, Segal A et al (1973) Dose-response studies with a pure tumor-promoting agent, phorbol myristate acetate. Cancer Res 33(9):2166–2172

    Google Scholar 

  53. Nagy P, Kettle AJ, Winterbourn CC (2010) Neutrophil-mediated oxidation of enkephalins via myeloperoxidase-dependent addition of superoxide. Free Radic Biol Med 49(5):792–799. https://doi.org/10.1016/j.freeradbiomed.2010.05.033

    Article  CAS  Google Scholar 

  54. Nagy P, Kettle AJ, Winterbourn CC (2009) Superoxide-mediated formation of tyrosine hydroperoxides and methionine sulfoxide in peptides through radical addition and intramolecular oxygen transfer. J Biol Chem 284(22):14723–14733. https://doi.org/10.1074/jbc.M809396200

    Article  CAS  Google Scholar 

  55. Kettle AJ, Winterbourn CC (1989) Influence of superoxide on myeloperoxidase kinetics measured with a hydrogen peroxide electrode. Biochem J 263(3):823–828

    Article  CAS  Google Scholar 

  56. Kettle AJ, Anderson RF, Hampton MB et al (2007) Reactions of superoxide with myeloperoxidase. Biochemistry 46(16):4888–4897. https://doi.org/10.1021/bi602587k

    Article  CAS  Google Scholar 

  57. Gallin JI, Seligmann BE (1984) Neutrophil chemoattractant fMet-Leu-Phe receptor expression and ionic events following activation. Contemp Top Immunobiol 14:83–108

    CAS  Google Scholar 

  58. Timm M, Saaby L, Moesby L et al (2013) Considerations regarding use of solvents in in vitro cell based assays. Cytotechnology 65(5):887–894. https://doi.org/10.1007/s10616-012-9530-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Hungarian National Science Foundation (OTKA; grant No.: K 109843, KH17_126766 and K18_129286 for P.N. and K 112333 for J.B.) and the National Institutes of Health (grant No.: R21AG055022-01 for P.N.). Financial supports from the Hungarian Government in a GINOP-2.3.2-15-2016-00043 project (for J.B. and P.N.) and from the European Union in a European Regional Development Fund are also acknowledged. The research group is supported by the Hungarian Academy of Sciences (11003). P.N. is a János Bolyai Research Scholar of the Hungarian Academy of Sciences. Dojindo Molecular Technologies Inc. is greatly acknowledged for their kind support of high-quality chemical supplies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Nagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Garai, D., Pálinkás, Z., Balla, J., Kettle, A.J., Nagy, P. (2019). Measurements for Sulfide-Mediated Inhibition of Myeloperoxidase Activity. In: Bełtowski, J. (eds) Vascular Effects of Hydrogen Sulfide. Methods in Molecular Biology, vol 2007. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9528-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9528-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9527-1

  • Online ISBN: 978-1-4939-9528-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics