Skip to main content

Embryonic Chimeras with Human Pluripotent Stem Cells

  • Protocol
  • First Online:
Chimera Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2005))

Abstract

Human pluripotent stem (PS) cells can be isolated from preimplantation embryos or by reprogramming of somatic cells or germline progenitors. Human PS cells are considered the “holy grail” of regenerative medicine because they have the potential to form all cell types of the adult body. Because of their similarity to humans, nonhuman primate (NHP) PS cells are also important models for studying human biology and disease, as well as for developing therapeutic strategies and test bed for cell replacement therapy. This chapter describes adjusted methods for cultivation of PS cells from different primate species, including African green monkey, rhesus monkey, chimpanzee, and human. Supplementation of E8 medium and inhibitors of the Tankyrase and GSK3 kinases to various primate PS cell media reduce line-dependent predisposition for spontaneous differentiation in conventional PS cell cultures. We provide methods for basic characterization of primate PS cell lines, which include immunostaining for pluripotency markers such as OCT4 and TRA-1-60, as well as in vivo teratoma formation assay. We provide methods for generating alternative PS cells including region-selective primed PS cells, two different versions of naïve-like cells, and recently reported extended pluripotent stem (EPS) cells. These derivations are achieved by acclimation of conventional PS cells to target media, episomal reprogramming of somatic cells, or resetting conventional PS cells to a naïve-like state by overexpression of KLF2 and NANOG. We also provide methods for isolation of PS cells from human blastocysts. We describe how to generate interspecies primate-mouse chimeras at the blastocyst and postimplantation embryo stages. Systematic evaluation of the chimeric competency of human and primate PS cells will aid in efforts to overcome species barriers and achieve higher grade chimerism in postimplantation conceptuses that could enable organ-specific enrichment of human xenogeneic PS cell derivatives in large animals such as pigs and sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nichols J, Smith A (2009) Naïve and primed pluripotent states. Cell Stem Cell 4:487–492

    Article  CAS  Google Scholar 

  2. De Los Angeles A, Ferrari F, Xi R, Fujiwara Y, Benvenisty N, Deng H, Hochedlinger K, Jaenisch R, Lee S, Leitch HG, Lensch MW, Lujan E, Pei D, Rossant J, Wernig M, Park PJ, Daley GQ (2015) Hallmarks of pluripotency. Nature 525:469–478

    Article  Google Scholar 

  3. Wu J, Izpisua Belmonte JC (2015) Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17:509–525

    Article  CAS  Google Scholar 

  4. Cohen MA, Markoulaki S, Jaenisch R (2018) Matched developmental timing of donor cells with the host is crucial for chimera formation. Stem Cell Rep 10:1445–1452

    Article  CAS  Google Scholar 

  5. Brons IG, Smthers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

    Article  CAS  Google Scholar 

  6. Huang Y, Osorno R, Tsakiridis A, Wilson V (2012) In Vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation. Cell Rep 2:1571–1578

    Article  CAS  Google Scholar 

  7. Kojima Y, Kaufman-Francis K, Studdert JB, Steiner KA, Power MD, Loebel DAF, Jones V, Hor A, de Alencastro G, Logan GJ et al (2014) The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak. Cell Stem Cell 14:107–120

    Article  CAS  Google Scholar 

  8. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199

    Article  CAS  Google Scholar 

  9. Wu J, Okamura D, Li M, Suzuki K, Luo C, Ma L, He Y, Li Z, Benner C, Tamura I, Krause MN, Nery JR, Du T, Zhang Z, Hishida T, Takahashi Y, Aizawa E, Kim NY, Lajara J, Guillen P, Campistol JM, Esteban CR, Ross PJ, Saghatelian A, Ren B, Ecker JR, Izpisua Belmonte JC (2015) An alternative pluripotent state confers interspecies chimaeric competency. Nature 521:316–321

    Article  CAS  Google Scholar 

  10. Honda A, Choijookhuu N, Izu H, Kawano Y, Inokuchi M, Honsho K, Lee A-R, Nabekura H, Ohta H, Tsukiyama T et al (2017) Flexible adaptation of male germ cells from female iPSCs of endangered Tokudaia osimensis. Sci Adv 3:e1602179

    Article  Google Scholar 

  11. Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, Sato H, Lee YS, Usui J, Knisely AS, Hirabayashi M, Nakauchi H (2010) Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142:787–799

    Article  CAS  Google Scholar 

  12. Lee S-G, Mikhalchenko AE, Yim SH, Lobanov AV, Park J-K, Choi K-H, Bronson RT, Lee C-K, Park TJ, Gladyshev VN (2017) Naked mole rat induced pluripotent stem cells and their contribution to interspecific chimera. Stem Cell Rep 9:1706–1720

    Article  Google Scholar 

  13. Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, Suzuki K, Bogliotti YS, Cuello C, Morales Valencia M, Okumura D, Luo J, Vilarino M, Parrilla I, Soto DA, Martinez CA, Hishida T, Sanchez-Bautista S, Martinez-Martinez ML, Wang H, Nohalez A, Aizawa E, Martinez-Redondo P, Ocampo A, Reddy P, Roca J, Maga EA, Esteban CR, Berggren WT, Nunez Delicado E, Lajara J, Guillen I, Guillen P, Campistol JM, Martinez EA, Ross PJ, Izpisua Belmonte JC (2017) Interspecies chimerism with mammalian pluripotent stem cells. Cell 168:473–486

    Article  CAS  Google Scholar 

  14. Xiang AP, Mao FF, Li W-Q, Park D, Ma B-F, Wang T, Vallender TW, Vallender EJ, Zhang L, Lee J et al (2008) Extensive contribution of embryonic stem cells to the development of an evolutionarily divergent host. Hum Mol Genet 17:27–37

    Article  CAS  Google Scholar 

  15. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna JH (2013) Derivation of novel human ground state naïve pluripotent stem cells. Nature 504:282–286

    Article  CAS  Google Scholar 

  16. Theunissen TW, Friedli M, He Y, Planet E, O’Neil RC, Markoulaki S, Pontis J, Wang H, Iouranova A, Imbeault M, Duc J, Cohen MA, Wert KJ, Castanon R, Zhang Z, Huang Y, Nery JR, Drotar J, Lungjangwa T, Trono D, Ecker JR, Jaenisch R (2016) Molecular criteria for defining the naïve human pluripotent state. Cell Stem Cell 19:502–515

    Article  CAS  Google Scholar 

  17. Theunissen TW, Powell BE, Wang H, Mitalipova M, Faddah DA, Reddy J, Fan ZP, Maetzel D, Ganz K, Shi L, Lungjangwa T, Imsoonthornruksa S, Stelzer Y, Rangarajan S, D’Alessio A, Zhang J, Gao Q, Dawlaty MM, Young RA, Gray NS, Jaenisch R (2014) Systematic identification of culture conditions for induction and maintenance of naïve human pluripotency. Cell Stem Cell 15:471–487

    Article  CAS  Google Scholar 

  18. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, Xu Y, Dong J, Wang C, Lai W, Zhu J, Xiong L, Zhu D, Li X, Yang W, Yamauchi T, Sugawara A, Li Z, Sun F, Li X, Li C, He A, Du Y, Wang T, Zhao C, Li H, Chi X, Zhang H, Liu Y, Li C, Duo S, Yin M, Shen H, Belmonte JCI, Deng H (2017) Derivation of pluripotent stem cells with in vivo and extraembryonic potency. Cell 169:243–257

    Article  CAS  Google Scholar 

  19. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  Google Scholar 

  20. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  Google Scholar 

  21. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  Google Scholar 

  22. Yu J, Vodyani MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Sluvkin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  Google Scholar 

  23. Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F, Cassady JP, Muffat J, Carey BW, Jaenisch R (2010) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. PNAS 107:9222–9227

    Article  CAS  Google Scholar 

  24. Tachibana M, Sparman M, Ramsey C, Ma H, Lee HS, Penedo MC, Mitalipov S (2012) Generation of chimeric rhesus monkeys. Cell 148:285–295

    Article  CAS  Google Scholar 

  25. Chan YS, Goke J, Ng JH, Lu X, Gonzalez KA, Tan CP, Tng WQ, Hong ZZ, Lim YS, Ng HH (2013) Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13:663–675

    Article  CAS  Google Scholar 

  26. Ware CB, Nelson AM, Mecham B, Hesson J, Zhou W, Jonlin EC, Jimenez-Caliani AJ, Deng X, Cavanaugh C, Cook S, Tesar PJ, Okada J, Margaretha L, Sperber H, Choi M, Blau CA, Treuting PM, Hawkins RD, Cirulli V, Ruohola-Baker H (2014) Derivation of naïve human embryonic stem cells. PNAS 111:4484–4489

    Article  CAS  Google Scholar 

  27. Valamehr B, Robinson M, Abujarour R, Rezner B, Vranceanu F, Le T, Medcalf A, Lee TT, Fitch M, Robbins D, Flynn P (2014) Platform for induction of maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells. Stem Cell Rep 2:366–381

    Article  CAS  Google Scholar 

  28. Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, Oxley D, Santos F, Clarke J, Mansfield W, Reik W, Bertone P, Smith A (2014) Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158:1254–1269

    Article  CAS  Google Scholar 

  29. Wu J, Greely HT, Jaenisch R, Nakauchi H, Rossant J, Belmonte JC (2016) Stem cells and interspecies chimaeras. Nature 540:51–59

    Article  CAS  Google Scholar 

  30. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424–429

    Article  CAS  Google Scholar 

  31. Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson, JA (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3:637–646

    Article  CAS  Google Scholar 

  32. Kim H, Wu J, Ye S, Tai CI, Zhou X, Yan H, Li P, Pera M, Ying QL (2013) Modulation of beta-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nat Commun 4:2403

    Article  Google Scholar 

  33. Okita K, Matsumara Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412

    Article  CAS  Google Scholar 

  34. Pastor WA, Chen D, Liu W, Kim R, Sahakyan A, Lukianchikov A, Plath K, Jacobsen SE, Clark AT (2016) Naïve human pluripotent stem cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell 18:323–329

    Article  CAS  Google Scholar 

  35. Chen Y, Niu Y, Li Y, Ai Z, Kang Y, Shi H, Xiang Z, Yang Z, Tan T, Si W, Li W, Xia X, Zhou Q, Ji W, Li T (2015) Generation of cynomolgus monkey chimeric fetuses using embryonic stem cells. Cell Stem Cell 17:116–124

    Article  CAS  Google Scholar 

  36. Fang R, Liu K, Zhao Y, Li H, Zhu D, Du Y, Xiang C, Li X, Liu H, Miao Z, Zhang X, Shi Y, Yang W, Xu J, Deng H (2014) Generation of naïve induced pluripotent stem cells from rhesus monkey fibroblasts. Cell Stem Cell 15:488–497

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandro De Los Angeles or Jun Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

De Los Angeles, A., Sakurai, M., Wu, J. (2019). Embryonic Chimeras with Human Pluripotent Stem Cells. In: Hyun, I., De Los Angeles, A. (eds) Chimera Research . Methods in Molecular Biology, vol 2005. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9524-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9524-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9523-3

  • Online ISBN: 978-1-4939-9524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics