Skip to main content

Pig Chimeric Model with Human Pluripotent Stem Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2005))

Abstract

Interspecies chimera formation provides a unique platform for studying donor cell developmental potential, modeling disease in vivo, as well as in vivo production of tissues and organs. The derivation of human pluripotent stem cells (hPSC) from either human embryos or somatic cell reprogramming facilitates our understanding of human development, as well as accelerates our exploration of regenerative medicine for human health. Due to similar organ size, close anatomy, and physiology between pig and human, human-Pig interspecies chimeric model in which pig serves as the host species may open new avenues for studying human embryogenesis, disease pathogenesis, and generation of human organ for transplantation to solve the worldwide donor organ shortage. Our previous study demonstrated chimeric competency of different types of human PSCs in pig host. In this chapter, we introduce our workflow for the generation of human PSCs and analysis of its chimeric contribution to pre- and postimplantation pig embryos.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  Google Scholar 

  2. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  Google Scholar 

  3. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  Google Scholar 

  4. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  Google Scholar 

  5. Brons IG et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448(7150):191–195

    Article  CAS  Google Scholar 

  6. Tesar PJ et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199

    Article  CAS  Google Scholar 

  7. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4(6):487–492

    Article  CAS  Google Scholar 

  8. Wu J et al (2015) An alternative pluripotent state confers interspecies chimaeric competency. Nature 521(7552):316–321

    Article  CAS  Google Scholar 

  9. Wu J, Izpisua Belmonte JC (2016) Stem cells: a renaissance in human biology research. Cell 165(7):1572–1585

    Article  CAS  Google Scholar 

  10. Ying QL et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523

    Article  CAS  Google Scholar 

  11. Huang Y et al (2012) In Vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation. Cell Rep 2(6):1571–1578

    Article  CAS  Google Scholar 

  12. Gafni O et al (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature 504(7479):282–286

    Article  CAS  Google Scholar 

  13. Takashima Y et al (2014) Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158(6):1254–1269

    Article  CAS  Google Scholar 

  14. Theunissen TW et al (2014) Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15(4):471–487

    Article  CAS  Google Scholar 

  15. Wu J, Izpisua Belmonte JC (2015) Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17(5):509–525

    Article  CAS  Google Scholar 

  16. Wu J et al (2017) Interspecies chimerism with mammalian pluripotent stem cells. Cell 168(3):473–486.e15

    Article  CAS  Google Scholar 

  17. Tsukiyama T, Ohinata Y (2014) A modified EpiSC culture condition containing a GSK3 inhibitor can support germline-competent pluripotency in mice. PLoS One 9(4):e95329

    Article  Google Scholar 

  18. Yoshioka K, Noguchi M, Suzuki C (2012) Production of piglets from in vitro-produced embryos following non-surgical transfer. Anim Reprod Sci 131(1–2):23–29

    Article  Google Scholar 

  19. Pursel VG, Johnson LA (1975) Freezing of boar spermatozoa: fertilizing capacity with concentrated semen and a new thawing procedure. J Anim Sci 40(1):99–102

    Article  CAS  Google Scholar 

  20. Funahashi H, Ekwall H, Rodriguez-Martinez H (2000) Zona reaction in porcine oocytes fertilized in vivo and in vitro as seen with scanning electron microscopy. Biol Reprod 63(5):1437–1442

    Article  CAS  Google Scholar 

  21. Martinez EA et al (2014) Successful non-surgical deep uterine transfer of porcine morulae after 24 hour culture in a chemically defined medium. PLoS One 9(8):e104696

    Article  Google Scholar 

  22. Petters RM, Wells KD (1993) Culture of pig embryos. J Reprod Fertil Suppl 48:61–73

    CAS  PubMed  Google Scholar 

  23. Ross PJ et al (2008) Polycomb gene expression and histone H3 lysine 27 trimethylation changes during bovine preimplantation development. Reproduction 136(6):777–785

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Salk Waitt Advanced Biophotonic Core for technical advice on imaging analysis and Salk Stem Cell Core for providing cell culture reagents. We would like to thank May Schwarz and Peter Schwarz for administrative help. This work was supported by Universidad Católica San Antonio de Murcia (UCAM), the Larry L. Hillblom Foundation, Paul F. Glenn Foundation, and the Moxie Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wu or Juan Carlos Izpisua Belmonte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhong, C., Wu, J., Izpisua Belmonte, J.C. (2019). Pig Chimeric Model with Human Pluripotent Stem Cells. In: Hyun, I., De Los Angeles, A. (eds) Chimera Research . Methods in Molecular Biology, vol 2005. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9524-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9524-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9523-3

  • Online ISBN: 978-1-4939-9524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics