Knocking in Multifunctional Gene Tags into SMC Complex Subunits Using Gene Editing

  • Paul KalitsisEmail author
  • Tao Zhang
  • Ji Hun Kim
  • Christian F. Nielsen
  • Kathryn M. Marshall
  • Damien F. HudsonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2004)


Condensin, a highly conserved pentameric chromosome complex, is required for the correct organization and folding of the genome. Here, we highlight how to knock protein tags into endogenous loci to faithfully study the condensin complex in vertebrates and dissect its multiple functions. These include using the streptavidin binding peptide (SBP) to create the first genome-wide map of condensin and perform varied applications in proteomics and enzymology of the complex. The revolution in gene editing using CRISPR/Cas9 has made it possible to insert tags into endogenous loci with relative ease, allowing physiological and fully functional tagged protein to be analyzed biochemically (affinity tags), microscopically (fluorescent tags) or both purified and localized (multifunctional tags). In this chapter, we detail how to engineer vertebrate cells using CRISPR/Cas9 to provide researchers powerful tools to obtain greater precision than ever to understand how the complex interacts and behaves in cells.

Key words

Condensin Streptavidin binding peptide Gene editing CRISPR/Cas9 Chromosomes Mitosis Southern blot hybridization 



The work presented in this chapter was supported by National Health and Medical Research Council (Australia) project Grants GNT1127209 (PK and DH) and GNT1145188 (PK and DH) and by the Victorian Government’s Operational Infrastructure Support Program.


  1. 1.
    Kalitsis P, Zhang T, Marshall KM et al (2017) Condensin, master organizer of the genome. Chromosome Res 25:61–76. CrossRefPubMedGoogle Scholar
  2. 2.
    Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551CrossRefGoogle Scholar
  3. 3.
    Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC (2003) Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev Cell 5:323–336CrossRefGoogle Scholar
  4. 4.
    Green LC, Kalitsis P, Chang TM et al (2012) Contrasting roles of condensin I and condensin II in mitotic chromosome formation. J Cell Sci 125:1591–1604. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nishimura K, Fukagawa T, Takisawa H et al (2009) An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods 6:917–922. CrossRefPubMedGoogle Scholar
  6. 6.
    Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rigaut G, Shevchenko A, Rutz B et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032. CrossRefPubMedGoogle Scholar
  8. 8.
    Canella D, Praz V, Reina JH et al (2010) Defining the RNA polymerase III transcriptome: genome-wide localization of the RNA polymerase III transcription machinery in human cells. Genome Res 20:710–721. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kim JH, Zhang T, Wong NC et al (2013) Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes. Nat Commun 4:2537. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cheeseman IM, Desai A (2005) A combined approach for the localization and tandem affinity purification of protein complexes from metazoans. Sci STKE 2005:pl1. CrossRefPubMedGoogle Scholar
  11. 11.
    Hudson DF, Ohta S, Freisinger T et al (2008) Molecular and genetic analysis of condensin function in vertebrate cells. Mol Biol Cell 19:3070–3079. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ma H, McLean JR, Chao LF-I et al (2012) A highly efficient multifunctional tandem affinity purification approach applicable to diverse organisms. Mol Cell Proteomics 11:501–511. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Keefe AD, Wilson DS, Seelig B, Szostak JW (2001) One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr Purif 23:440–446. CrossRefPubMedGoogle Scholar
  14. 14.
    Kim JH, Chang TM, Graham AN et al (2010) Streptavidin-binding peptide (SBP)-tagged SMC2 allows single-step affinity fluorescence, blotting or purification of the condensin complex. BMC Biochem 11:50. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kimberland ML, Hou W, Alfonso-Pecchio A et al (2018) Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments. J Biotechnol 284:91–101. CrossRefPubMedGoogle Scholar
  16. 16.
    Budowle B, Baechtel FS (1990) Modifications to improve the effectiveness of restriction fragment length polymorphism typing. Appl Theor Electrophor 1:181–187PubMedGoogle Scholar
  17. 17.
    Koch B, Nijmeijer B, Kueblbeck M et al (2018) Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing. Nat Protoc 13:1465–1487. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Paul Kalitsis
    • 1
    • 2
    Email author
  • Tao Zhang
    • 1
    • 2
  • Ji Hun Kim
    • 3
  • Christian F. Nielsen
    • 1
    • 2
  • Kathryn M. Marshall
    • 4
  • Damien F. Hudson
    • 1
    • 2
    Email author
  1. 1.Murdoch Childrens Research InstituteRoyal Children’s HospitalParkvilleAustralia
  2. 2.Department of PaediatricsUniversity of MelbourneParkvilleAustralia
  3. 3.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of Surgery, Austin HealthUniversity of MelbourneHeidelbergAustralia

Personalised recommendations