Skip to main content

High-Throughput Allelic Replacement Screening in Bacillus subtilis

Part of the Methods in Molecular Biology book series (MIMB,volume 2004)

Abstract

Site-directed mutagenesis is a key tool in the analysis of biological mechanisms. We have established an efficient and systematic gene targeting strategy for Bacillus subtilis based on the Golden Gate cloning methodology. Our approach permits the introduction of single or multiple point mutations or of heavily engineered alleles into the endogenous gene locus in a single step using a 96-well microtiter plate format. We have successfully applied this system for high-throughput functional screening of resized variants of the Structural Maintenance of Chromosome (Smc) protein and for exhaustive cysteine cross-linking mutagenesis. Here we describe, in detail, the experimental setup for high-throughput introduction of modifications into the B. subtilis chromosome. With minor modifications, the approach should be applicable to other bacteria and yeast.

Key words

  • Golden Gate assembly
  • Bacillus subtilis
  • Gene targeting
  • High-throughput screening
  • Cysteine scanning

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-9520-2_5
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-9520-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus Subtilis by deoxyribonucleate. Proc Natl Acad Sci U S A 44(10):1072–1078

    CrossRef  CAS  Google Scholar 

  2. Hamoen LW, Smits WK, Ad J, Holsappel S, Kuipers OP (2002) Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res 30(24):5517–5528

    CrossRef  CAS  Google Scholar 

  3. Tomasz A, Hotchkiss RD (1964) Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proc Natl Acad Sci U S A 51(3):480–487

    CrossRef  CAS  Google Scholar 

  4. Alexander HE, Leidy G (1950) Transformation of type specificity of Haemophilus influenzae. Proc Soc Exp Biol Med 73:485–487

    CrossRef  CAS  Google Scholar 

  5. Meibom KL, Blokesch M, Dolganov NA, Wu C-Y, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae. Science 310(5755):1824

    CrossRef  CAS  Google Scholar 

  6. Mell JC, Redfield RJ (2014) Natural competence and the evolution of DNA uptake specificity. J Bacteriol 196(8):1471

    CrossRef  Google Scholar 

  7. Blokesch M (2016) Natural competence for transformation. Curr Biol 26(21):R1126–R1130. https://doi.org/10.1016/j.cub.2016.08.058

    CrossRef  CAS  PubMed  Google Scholar 

  8. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11):e3647. https://doi.org/10.1371/journal.pone.0003647

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4(5):e5553. https://doi.org/10.1371/journal.pone.0005553

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Diebold-Durand ML, Lee H, Ruiz Avila LB, Noh H, Shin HC, Im H, Bock FP, Burmann F, Durand A, Basfeld A, Ham S, Basquin J, Oh BH, Gruber S (2017) Structure of full-length SMC and rearrangements required for chromosome organization. Mol Cell 67(2):334–347.e335. https://doi.org/10.1016/j.molcel.2017.06.010

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burmann F, Basfeld A, Vazquez Nunez R, Diebold-Durand ML, Wilhelm L, Gruber S (2017) Tuned SMC arms drive chromosomal loading of prokaryotic condensin. Mol Cell 65(5):861–872.e869. https://doi.org/10.1016/j.molcel.2017.01.026

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aizenman E, Engelberg-Kulka H, Glaser G (1996) An Escherichia coli chromosomal “addiction module” regulated by 3′,5′-bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci 93(12):6059

    CrossRef  CAS  Google Scholar 

  13. Gerdes K, Christensen SK, Løbner-Olesen A (2005) Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 3:371. https://doi.org/10.1038/nrmicro1147

    CrossRef  CAS  PubMed  Google Scholar 

  14. Cegłowski P, Boitsov A, Chai S, Alonso JC (1993) Analysis of the stabilization system of pSM19035-derived plasmid pBT233 in Bacillus subtilis. Gene 136(1):1–12. https://doi.org/10.1016/0378-1119(93)90441-5

    CrossRef  PubMed  Google Scholar 

  15. Lioy VS, Machon C, Tabone M, Gonzalez-Pastor JE, Daugelavicius R, Ayora S, Alonso JC (2012) The ζ toxin induces a set of protective responses and dormancy. PLoS One 7(1):e30282. https://doi.org/10.1371/journal.pone.0030282

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bieniossek C, Imasaki T, Takagi Y, Berger I (2012) MultiBac: expanding the research toolbox for multiprotein complexes. Trends Biochem Sci 37(2):49–57. https://doi.org/10.1016/j.tibs.2011.10.005

    CrossRef  CAS  PubMed  Google Scholar 

  17. Benoit RM, Ostermeier C, Geiser M, Li JSZ, Widmer H, Auer M (2016) Seamless insert-plasmid assembly at high efficiency and low cost. PLoS One 11(4):e0153158. https://doi.org/10.1371/journal.pone.0153158

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Gruber .

Editor information

Editors and Affiliations

Additional information

Author Contributions

F.B. and S.G. designed, established, and optimized the Golden Gate cloning and allelic replacement strategy. F.B. wrote code for automated primer design. M.-L.D.-D. wrote the draft manuscript, while F.B. and S.G. commented on the manuscript.

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Diebold-Durand, ML., Bürmann, F., Gruber, S. (2019). High-Throughput Allelic Replacement Screening in Bacillus subtilis . In: Badrinarayanan, A. (eds) SMC Complexes. Methods in Molecular Biology, vol 2004. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9520-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9520-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9519-6

  • Online ISBN: 978-1-4939-9520-2

  • eBook Packages: Springer Protocols