Skip to main content

High-Throughput Allelic Replacement Screening in Bacillus subtilis

  • Protocol
  • First Online:
Book cover SMC Complexes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2004))

Abstract

Site-directed mutagenesis is a key tool in the analysis of biological mechanisms. We have established an efficient and systematic gene targeting strategy for Bacillus subtilis based on the Golden Gate cloning methodology. Our approach permits the introduction of single or multiple point mutations or of heavily engineered alleles into the endogenous gene locus in a single step using a 96-well microtiter plate format. We have successfully applied this system for high-throughput functional screening of resized variants of the Structural Maintenance of Chromosome (Smc) protein and for exhaustive cysteine cross-linking mutagenesis. Here we describe, in detail, the experimental setup for high-throughput introduction of modifications into the B. subtilis chromosome. With minor modifications, the approach should be applicable to other bacteria and yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus Subtilis by deoxyribonucleate. Proc Natl Acad Sci U S A 44(10):1072–1078

    Article  CAS  Google Scholar 

  2. Hamoen LW, Smits WK, Ad J, Holsappel S, Kuipers OP (2002) Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res 30(24):5517–5528

    Article  CAS  Google Scholar 

  3. Tomasz A, Hotchkiss RD (1964) Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proc Natl Acad Sci U S A 51(3):480–487

    Article  CAS  Google Scholar 

  4. Alexander HE, Leidy G (1950) Transformation of type specificity of Haemophilus influenzae. Proc Soc Exp Biol Med 73:485–487

    Article  CAS  Google Scholar 

  5. Meibom KL, Blokesch M, Dolganov NA, Wu C-Y, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae. Science 310(5755):1824

    Article  CAS  Google Scholar 

  6. Mell JC, Redfield RJ (2014) Natural competence and the evolution of DNA uptake specificity. J Bacteriol 196(8):1471

    Article  Google Scholar 

  7. Blokesch M (2016) Natural competence for transformation. Curr Biol 26(21):R1126–R1130. https://doi.org/10.1016/j.cub.2016.08.058

    Article  CAS  PubMed  Google Scholar 

  8. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11):e3647. https://doi.org/10.1371/journal.pone.0003647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4(5):e5553. https://doi.org/10.1371/journal.pone.0005553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Diebold-Durand ML, Lee H, Ruiz Avila LB, Noh H, Shin HC, Im H, Bock FP, Burmann F, Durand A, Basfeld A, Ham S, Basquin J, Oh BH, Gruber S (2017) Structure of full-length SMC and rearrangements required for chromosome organization. Mol Cell 67(2):334–347.e335. https://doi.org/10.1016/j.molcel.2017.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burmann F, Basfeld A, Vazquez Nunez R, Diebold-Durand ML, Wilhelm L, Gruber S (2017) Tuned SMC arms drive chromosomal loading of prokaryotic condensin. Mol Cell 65(5):861–872.e869. https://doi.org/10.1016/j.molcel.2017.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aizenman E, Engelberg-Kulka H, Glaser G (1996) An Escherichia coli chromosomal “addiction module” regulated by 3′,5′-bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci 93(12):6059

    Article  CAS  Google Scholar 

  13. Gerdes K, Christensen SK, Løbner-Olesen A (2005) Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 3:371. https://doi.org/10.1038/nrmicro1147

    Article  CAS  PubMed  Google Scholar 

  14. Cegłowski P, Boitsov A, Chai S, Alonso JC (1993) Analysis of the stabilization system of pSM19035-derived plasmid pBT233 in Bacillus subtilis. Gene 136(1):1–12. https://doi.org/10.1016/0378-1119(93)90441-5

    Article  PubMed  Google Scholar 

  15. Lioy VS, Machon C, Tabone M, Gonzalez-Pastor JE, Daugelavicius R, Ayora S, Alonso JC (2012) The ζ toxin induces a set of protective responses and dormancy. PLoS One 7(1):e30282. https://doi.org/10.1371/journal.pone.0030282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bieniossek C, Imasaki T, Takagi Y, Berger I (2012) MultiBac: expanding the research toolbox for multiprotein complexes. Trends Biochem Sci 37(2):49–57. https://doi.org/10.1016/j.tibs.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  17. Benoit RM, Ostermeier C, Geiser M, Li JSZ, Widmer H, Auer M (2016) Seamless insert-plasmid assembly at high efficiency and low cost. PLoS One 11(4):e0153158. https://doi.org/10.1371/journal.pone.0153158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Gruber .

Editor information

Editors and Affiliations

Additional information

Author Contributions

F.B. and S.G. designed, established, and optimized the Golden Gate cloning and allelic replacement strategy. F.B. wrote code for automated primer design. M.-L.D.-D. wrote the draft manuscript, while F.B. and S.G. commented on the manuscript.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Diebold-Durand, ML., Bürmann, F., Gruber, S. (2019). High-Throughput Allelic Replacement Screening in Bacillus subtilis . In: Badrinarayanan, A. (eds) SMC Complexes. Methods in Molecular Biology, vol 2004. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9520-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9520-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9519-6

  • Online ISBN: 978-1-4939-9520-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics