SMC Complexes pp 239-250 | Cite as

Live-Cell Fluorescence Imaging of RecN in Caulobacter crescentus Under DNA Damage

  • Afroze Chimthanawala
  • Anjana BadrinarayananEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2004)


Structural maintenance of chromosomes (SMC) proteins play a central role in the organization, segregation and maintenance of chromosomes across domains of life. In bacteria, an SMC-family protein, RecN, has been implicated to have important functions in DNA damage repair. Recent studies have suggested that RecN is required to increase chromosome cohesion in response to DNA damage and may also stimulate specific events during recombination-based repair. While biochemical and genetic assays provide insights into mechanism of action of RecN and other repair factors, in vivo understanding of activity and regulation of proteins can be predominantly gained via microscopy-based approaches. Here, we describe a protocol to study the localization of fluorescently tagged RecN to a site-specific double-strand break (DSB) in Caulobacter crescentus. We further outline a method to probe RecN dynamics in cells with a single, nonreplicating chromosome. This technique can be used to study the early steps of recombination-based repair and understand the regulation of protein recruitment to and further association with sites of damage.

Key words

SMC proteins RecN Caulobacter crescentus Double-strand break repair Microscopy Fluorescence imaging Bacterial DNA damage 



We thank Dr. Asha Mary Joseph and other members of the AB lab for comments on the manuscript. AB acknowledges funding from the Tata Institute of Fundamental Research and a Career Development Award from the Human Frontier of Sciences Program.


  1. 1.
    Uhlmann F (2016) SMC complexes: from DNA to chromosomes. Nat Rev Mol Cell Biol 17:399–412CrossRefGoogle Scholar
  2. 2.
    Nolivos S, Sherratt D (2014) The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol Rev 38:380–392CrossRefGoogle Scholar
  3. 3.
    Haering CH, Gruber S (2016) SnapShot: SMC protein complexes part I. Cell 164:326–326.e1CrossRefGoogle Scholar
  4. 4.
    Haering CH, Gruber S (2016) SnapShot: SMC protein complexes part II. Cell 164:818.e1PubMedGoogle Scholar
  5. 5.
    Ayora S, Carrasco B, Cárdenas PP et al (2011) Double-strand break repair in bacteria: a view from Bacillus subtilis. FEMS Microbiol Rev 35:1055–1081CrossRefGoogle Scholar
  6. 6.
    Azeroglu B, Lincker F, White MA et al (2014) A perfect palindrome in the Escherichia coli chromosome forms DNA hairpins on both leading- and lagging-strands. Nucleic Acids Res 42:13206–13213CrossRefGoogle Scholar
  7. 7.
    Pellegrino S, Radzimanowski J, de Sanctis D et al (2012) Structural and functional characterization of an SMC-like protein RecN: new insights into double-strand break repair. Structure 20:2076–2089CrossRefGoogle Scholar
  8. 8.
    Kleine Borgmann LAK, Graumann PL (2014) Structural maintenance of chromosome complex in bacteria. J Mol Microbiol Biotechnol 24:384–395CrossRefGoogle Scholar
  9. 9.
    Cardenas PP, Gándara C, Alonso JC (2014) DNA double strand break end-processing and RecA induce RecN expression levels in Bacillus subtilis. DNA Repair (Amst) 14:1–8CrossRefGoogle Scholar
  10. 10.
    Reyes ED, Patidar PL, Uranga LA et al (2010) RecN is a cohesin-like protein that stimulates intermolecular DNA interactions in vitro. J Biol Chem 285:16521–16529CrossRefGoogle Scholar
  11. 11.
    Nagashima K, Kubota Y, Shibata T et al (2006) Degradation of Escherichia coli RecN aggregates by ClpXP protease and its implications for DNA damage tolerance. J Biol Chem 281:30941–30946CrossRefGoogle Scholar
  12. 12.
    Vickridge E, Planchenault C, Cockram C et al (2017) Management of E. coli sister chromatid cohesion in response to genotoxic stress. Nat Commun 8:14618CrossRefGoogle Scholar
  13. 13.
    Keyamura K, Sakaguchi C, Kubota Y et al (2013) RecA protein recruits structural maintenance of chromosomes (SMC)-like RecN protein to DNA double-strand breaks. J Biol Chem 288:29229–29237CrossRefGoogle Scholar
  14. 14.
    Odsbu I, Skarstad K (2014) DNA compaction in the early part of the SOS response is dependent on RecN and RecA. Microbiology 160:872–882CrossRefGoogle Scholar
  15. 15.
    Uranga LA, Reyes ED, Patidar PL et al (2017) The cohesin-like RecN protein stimulates RecA-mediated recombinational repair of DNA double-strand breaks. Nat Commun 8:15282CrossRefGoogle Scholar
  16. 16.
    Sanchez H, Kidane D, Castillo Cozar M et al (2006) Recruitment of Bacillus subtilis RecN to DNA double-strand breaks in the absence of DNA end processing. J Bacteriol 188:353–360CrossRefGoogle Scholar
  17. 17.
    Kidane D, Graumann PL (2005) Dynamic formation of RecA filaments at DNA double strand break repair centers in live cells. J Cell Biol 170:357–366CrossRefGoogle Scholar
  18. 18.
    Coltharp C, Xiao J (2012) Superresolution microscopy for microbiology. Cell Microbiol 14:1808–1818CrossRefGoogle Scholar
  19. 19.
    Schneider JP, Basler M (2016) Shedding light on biology of bacterial cells. Philos Trans R Soc Lond Ser B Biol Sci 371(1707)CrossRefGoogle Scholar
  20. 20.
    Stracy M, Uphoff S, Garza de Leon F et al (2014) In vivo single-molecule imaging of bacterial DNA replication, transcription, and repair. FEBS Lett 588:3585–3594CrossRefGoogle Scholar
  21. 21.
    Uphoff S, Sherratt DJ (2017) Single-molecule analysis of bacterial DNA repair and mutagenesis. Annu Rev Biophys 46:411–432CrossRefGoogle Scholar
  22. 22.
    Badrinarayanan A, Le TBK, Laub MT (2015) Rapid pairing and resegregation of distant homologous loci enables double-strand break repair in bacteria. J Cell Biol 210:385–400CrossRefGoogle Scholar
  23. 23.
    Badrinarayanan A, Le TBK, Spille J-H et al (2017) Global analysis of double-strand break processing reveals in vivo properties of the helicase-nuclease complex AddAB. PLoS Genet 13:e1006783CrossRefGoogle Scholar
  24. 24.
    Wang X, Montero Llopis P, Rudner DZ (2013) Organization and segregation of bacterial chromosomes. Nat Rev Genet 14:191–203CrossRefGoogle Scholar
  25. 25.
    Lesterlin C, Ball G, Schermelleh L et al (2014) RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506:249–253CrossRefGoogle Scholar
  26. 26.
    Rajendram M, Zhang L, Reynolds BJ et al (2015) Anionic phospholipids stabilize RecA filament bundles in Escherichia coli. Mol Cell 60:374–384CrossRefGoogle Scholar
  27. 27.
    Huang B, Wang W, Bates M et al (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813CrossRefGoogle Scholar
  28. 28.
    Schrader JM, Shapiro L (2015) Synchronization of Caulobacter crescentus for investigation of the bacterial cell cycle. J Vis Exp (98)Google Scholar
  29. 29.
    Plessis A, Perrin A, Haber JE et al (1992) Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130:451–460PubMedPubMedCentralGoogle Scholar
  30. 30.
    Thanbichler M, Iniesta AA, Shapiro L (2007) A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res 35:e137CrossRefGoogle Scholar
  31. 31.
    Paintdakhi A, Parry B, Campos M et al (2016) Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. Mol Microbiol 99:767–777CrossRefGoogle Scholar
  32. 32.
    Leslie DJ, Heinen C, Schramm FD et al (2015) Nutritional control of DNA replication initiation through the proteolysis and regulated translation of DnaA. PLoS Genet 11:e1005342CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR)BangaloreIndia
  2. 2.SASTRA UniversityTanjoreIndia

Personalised recommendations