Skip to main content

A Protocol for Assaying the ATPase Activity of Recombinant Cohesin Holocomplexes

  • Protocol
  • First Online:
SMC Complexes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2004))

Abstract

Cohesin and other members of the structural maintenance of chromosomes (SMC)-kleisin family such as condensin and Smc5-6, as well as central players in genome function and structure such as topoisomerases, DNA and RNA polymerases, and DNA repair enzymes contain nucleotide binding domains (NBD) which bind and eventually cleave ATP. The released energy is harnessed in various ways by these enzymes in order to fulfill their essential functions. However, unlike other enzymes, Smc-kleisin complexes—well sized, elongated and multisubunit in nature—have only recently been purified as holocomplexes. This progress offers both the opportunity and the challenge to determine in detail the potency of the ATPase activity of these large protein assemblies—typically exceeding 0.5 MDa in molecular weight—and examine its mechanistic features. We describe here in further detail a combined comprehensive protocol which we have successfully employed before for assaying the ATPase activity of recombinant budding yeast cohesin holocomplexes. We believe that with small and appropriate modifications the methods described here should be applicable to other ATPase complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kimura K, Hirano T (1997) ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90(4):625–634

    Article  CAS  PubMed  Google Scholar 

  2. Kamada K, Miyata M, Hirano T (2013) Molecular basis of SMC ATPase activation: role of internal structural changes of the regulatory subcomplex ScpAB. Structure 21(4):581–594

    Article  CAS  PubMed  Google Scholar 

  3. Arumugam P, Gruber S, Tanaka K, Haering CH, Mechtler K, Nasmyth K (2003) ATP hydrolysis is required for cohesin’s association with chromosomes. Curr Biol 13(22):1941–1953

    Article  CAS  PubMed  Google Scholar 

  4. Hu B, Itoh T, Mishra A, Katoh Y, Chan KL, Upcher W, Godlee C, Roig MB, Shirahige K, Nasmyth K (2011) ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr Biol 21(1):12–24. https://doi.org/10.1016/j.cub.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  5. Heidinger-Pauli J-M, Onn I, Koshland D (2010) Genetic evidence that the acetylation of the Smc3p subunit of cohesin modulates its ATP-bound state to promote cohesion establishment in Saccharomyces cerevisiae. Genetics 185(4):1249–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ladurner R, Bhaskara V, Huis in ’t Veld PJ, Davidson IF, Kreidl E, Petzold G, Peters JM (2014) Cohesin’s ATPase activity couples cohesin loading onto DNA with Smc3 acetylation. Curr Biol 24(19):2228–2237. https://doi.org/10.1016/j.cub.2014.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gligoris TG, Scheinost JC, Bürmann F, Petela N, Chan KL, Uluocak P, Beckouët F, Gruber S, Nasmyth K, Löwe J (2014) Closing the cohesin ring: structure and function of its Smc3-kleisin interface. Science 346(6212):963–967. https://doi.org/10.1126/science.1256917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haering CH, Schoffnegger D, Nishino T, Helmhart W, Nasmyth K, Löwe J (2004) Structure and stability of cohesin’s Smc1-kleisin interaction. Mol Cell 15(6):951–964

    Article  CAS  PubMed  Google Scholar 

  9. Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH, Greene EC (2017) The condensin complex is a mechanochemical motor that translocates along DNA. Science 358(6363):672–676. https://doi.org/10.1126/science.aan6516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A, Haering CH, Dekker C (2018) Real-time imaging of DNA loop extrusion by condensin. Science 360(6384):102–105. https://doi.org/10.1126/science.aar7831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Petela NJ, Gligoris TG, Metson J, Lee BG, Voulgaris M, Hu B, Kikuchi S, Chapard C, Chen W, Rajendra E, Srinivisan M, Yu H, Löwe J, Nasmyth KA (2018) Scc2 is a potent activator of cohesin’s ATPase that promotes loading by binding Scc1 without Pds5. Mol Cell 70(6):1134–1148.e7. https://doi.org/10.1016/j.molcel.2018.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wells JN, Gligoris TG, Nasmyth K, Marsh JA (2017) Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins. Curr Biol 27:R17–R18. https://doi.org/10.1016/j.cub.2016.11.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zawadzka K, Zawadzki P, Baker R, Rajasekar KV, Wagner F, Sherratt DJ, Arciszewska LK (2018) MukB ATPases are regulated independently by the N- and C-terminal domains of MukF kleisin. eLife 7. https://doi.org/10.7554/eLife.31522

  14. Webb MR (1992) A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc Natl Acad Sci U S A 89(11):4884–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murayama Y, Uhlmann F (2014) Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 505(7483):367–371. https://doi.org/10.1038/nature12867

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Voulgaris, M., Gligoris, T.G. (2019). A Protocol for Assaying the ATPase Activity of Recombinant Cohesin Holocomplexes. In: Badrinarayanan, A. (eds) SMC Complexes. Methods in Molecular Biology, vol 2004. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9520-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9520-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9519-6

  • Online ISBN: 978-1-4939-9520-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics