Skip to main content

In Vivo and In Vitro Assay for Monitoring the Topological Loading of Bacterial Condensins on DNA

  • Protocol
  • First Online:
SMC Complexes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2004))

  • 1047 Accesses

Abstract

Condensins play essential roles in the compaction and segregation of chromosomal DNA in life forms ranging from bacteria to higher organisms. To elucidate the molecular mechanisms underlying these roles, it is crucial to determine how and where condensins are loaded to chromosomal DNA. Here, we describe in vivo and in vitro assays for monitoring the topological loading of two bacterial condensins, Smc-ScpAB and MukBEF. A key step in these assays is washing the samples with a high concentration of salt in order to discriminate between electrostatic and topological binding of the bacterial condensins to DNA. In addition, isolation of bacterial condensin and DNA complexes prevents any undesired interaction between them due to cross-linking reagents. These methodologies provide reproducible and reliable results for the loading of topologically bound proteins such as bacterial condensins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Löwe J, Cordell SC, van den Ent F (2001) Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil. J Mol Biol 306:25–35

    Article  Google Scholar 

  2. Lammens A, Schele A, Hopfner KP (2004) Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases. Curr Biol 14:1778–1782

    Article  CAS  Google Scholar 

  3. Schleiffer A, Kaitna S, Maurer-Stroh S et al (2003) Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol Cell 11:571–575

    Article  CAS  Google Scholar 

  4. Palecek JJ, Gruber S (2015) Kite proteins: a superfamily of SMC/kleisin partners conserved across bacteria, archaea, and eukaryotes. Structure 23:2183–2190

    Article  CAS  Google Scholar 

  5. Niki H, Jaffé A, Imamura R et al (1991) The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J 10:183–193

    Article  CAS  Google Scholar 

  6. Moriya S, Tsujikawa E, Hassan AKM et al (1998) A Bacillus subtilis gene-encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition. Mol Microbiol 29:179–187

    Article  CAS  Google Scholar 

  7. Mascarenhas J (2002) Cell cycle-dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in Bacillus subtilis that interact with SMC protein. EMBO J 21:3108–3118

    Article  CAS  Google Scholar 

  8. Soppa J, Kobayashi K, Noirot-Gros MF et al (2002) Discovery of two novel families of proteins that are proposed to interact with prokaryotic SMC proteins, and characterization of the Bacillus subtilis family members ScpA and ScpB. Mol Microbiol 45:59–71

    Article  CAS  Google Scholar 

  9. Hirano T (2016) Condensin-based chromosome organization from bacteria to vertebrates. Cell 164:847–857

    Article  CAS  Google Scholar 

  10. Bürmann F, Shin HC, Basquin J et al (2013) An asymmetric SMC–kleisin bridge in prokaryotic condensing. Nat Struct Mol Biol 20:371–379

    Article  Google Scholar 

  11. Zawadzka K, Zawadzki P, Baker R et al (2018) MukB ATPases are regulated independently by the N- and C-terminal domains of MukF kleisin. elife 7:1941

    Article  Google Scholar 

  12. She W, Mordukhova E, Zhao H et al (2012) Mutational analysis of MukE reveals its role in focal subcellular localization of MukBEF. Mol Microbiol 87:539–552

    Article  Google Scholar 

  13. Gruber S, Veening JW, Bach J et al (2014) Interlinked sister chromosomes arise in the absence of condensin during fast replication in B. subtilis. Curr Biol 24:293–298

    Article  CAS  Google Scholar 

  14. Wang X, Le TBK, Lajoie BR et al (2015) Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev 29:1661–1675

    Article  CAS  Google Scholar 

  15. Hirano M, Hirano T (1998) ATP-dependent aggregation of single-stranded DNA by a bacterial SMC homodimer. EMBO J 17:7139–7148

    Article  CAS  Google Scholar 

  16. Niki H, Imamura R, Kitaoka M et al (1992) E. coli MukB protein involved in chromosome partition forms a homodimer with a rod-and-hinge structure having DNA binding and ATP/GTP binding activities. EMBO J 11:5101–5109

    Article  CAS  Google Scholar 

  17. Sutani T, Yanagida M (1997) DNA renaturation activity of the SMC complex implicated in chromosome condensation. Nature 388:798–801

    Article  CAS  Google Scholar 

  18. Wilhelm L, Bürmann F, Minnen A et al (2015) SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. eLife 4:11202

    Article  Google Scholar 

  19. Niki H, Yano K (2016) In vitro topological loading of bacterial condensin MukB on DNA, preferentially single-stranded DNA rather than double-stranded DNA. Sci Rep 6:595

    Article  Google Scholar 

  20. Britton RA, Lin DC, Grossman AD (1998) Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev 12:1254–1259

    Article  CAS  Google Scholar 

  21. Ohsumi K, Yamazoe M, Hiraga S (2001) Different localization of SeqA-bound nascent DNA clusters and MukF–MukE–MukB complex in Escherichia coli cells. Mol Microbiol 40:835–845

    Article  CAS  Google Scholar 

  22. Sullivan NL, Marquis KA, Rudner DZ (2009) Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137:697–707

    Article  CAS  Google Scholar 

  23. Wang X, Brandão HB, TBK L et al (2017) Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science 355:524–527

    Article  CAS  Google Scholar 

  24. Gruber S, Errington J (2009) Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137:685–696

    Article  CAS  Google Scholar 

  25. McGhee JD, Von Hippel PH (1977) Formaldehyde as a probe of DNA structure. 3. Equilibrium denaturation of DNA and synthetic polynucleotides. Biochemistry 16:3267–3276

    Article  CAS  Google Scholar 

  26. Waldminghaus T, Skarstad K (2010) ChIP on Chip: surprising results are often artifacts. BMC Genomics 11:414

    Article  Google Scholar 

  27. Murayama Y, Uhlmann F (2013) Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 505:367–371

    Article  Google Scholar 

  28. Yano K, Niki H (2017) Multiple cis-acting rDNAs contribute to nucleoid separation and recruit the bacterial condensin Smc-ScpAB. Cell Rep 21:1347–1360

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grants JP18H02485 and JP18K14627.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Niki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yano, K., Akiyama, K., Niki, H. (2019). In Vivo and In Vitro Assay for Monitoring the Topological Loading of Bacterial Condensins on DNA. In: Badrinarayanan, A. (eds) SMC Complexes. Methods in Molecular Biology, vol 2004. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9520-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9520-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9519-6

  • Online ISBN: 978-1-4939-9520-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics