Using Cell Cycle-Restricted Alleles to Study the Chromatin Dynamics and Functions of the Structural Maintenance of Chromosomes (SMC) Complexes In Vivo

  • Demis MenolfiEmail author
  • Dana BranzeiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2004)


SMC complexes play fundamental functions in chromosome architecture and organization as well as in DNA replication and repair throughout the cell cycle. The essential nature of the SMC components makes the study of their specific functions challenging. In this chapter, we describe the application of cell cycle tags to S. cerevisiae SMC genes. The cell cycle tags regulate both gene expression and protein degradation, allowing for restriction of the gene of interest to either the S or the G2/M phase. In case of SMC genes, the tags lead to valuable mutants that can bring insights into cell cycle specific essential functions, chromatin binding pattern and functional interactions. Here, we describe the generation of the cell cycle-restricted mutants in diploid and haploid cells and the validation of their functionality with several approaches.

Key words

SMC complexes Cell cycle tags Genetic crosses Tetrad dissection and analysis Protein expression 



We thank all the Branzei lab members for discussion. The work in the Branzei laboratory is supported by the Italian Association for Cancer Research (IG 18976), and European Research Council (Consolidator Grant 682190) grants to D.B. D.M. was supported by an FIRC/AIRC fellowship. The authors declare no conflict of interest.


  1. 1.
    Jeppsson K, Kanno T, Shirahige K, Sjogren C (2014) The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat Rev Mol Cell Biol 15(9):601–614. CrossRefPubMedGoogle Scholar
  2. 2.
    Uhlmann F (2016) SMC complexes: from DNA to chromosomes. Nat Rev Mol Cell Biol 17(7):399–412. CrossRefPubMedGoogle Scholar
  3. 3.
    Varejao N, Ibars E, Lascorz J, Colomina N, Torres-Rosell J, Reverter D (2018) DNA activates the Nse2/Mms21 SUMO E3 ligase in the Smc5/6 complex. EMBO J 37(12):pii: e98306. CrossRefGoogle Scholar
  4. 4.
    Zhao X, Blobel G (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci U S A 102(13):4777–4782. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Branzei D, Sollier J, Liberi G, Zhao X, Maeda D, Seki M, Enomoto T, Ohta K, Foiani M (2006) Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127(3):509–522. CrossRefPubMedGoogle Scholar
  6. 6.
    Bustard DE, Menolfi D, Jeppsson K, Ball LG, Dewey SC, Shirahige K, Sjogren C, Branzei D, Cobb JA (2012) During replication stress, non-SMC element 5 (NSE5) is required for Smc5/6 protein complex functionality at stalled forks. J Biol Chem 287(14):11374–11383. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP, Itoh T, Watanabe Y, Shirahige K, Uhlmann F (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430(6999):573–578. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lindroos HB, Strom L, Itoh T, Katou Y, Shirahige K, Sjogren C (2006) Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol Cell 22(6):755–767. CrossRefPubMedGoogle Scholar
  9. 9.
    D’Ambrosio C, Schmidt CK, Katou Y, Kelly G, Itoh T, Shirahige K, Uhlmann F (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22(16):2215–2227. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kegel A, Betts-Lindroos H, Kanno T, Jeppsson K, Strom L, Katou Y, Itoh T, Shirahige K, Sjogren C (2011) Chromosome length influences replication-induced topological stress. Nature 471(7338):392–396. CrossRefPubMedGoogle Scholar
  11. 11.
    Menolfi D, Delamarre A, Lengronne A, Pasero P, Branzei D (2015) Essential roles of the Smc5/6 complex in replication through natural pausing sites and endogenous DNA damage tolerance. Mol Cell 60(6):835–846. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hombauer H, Srivatsan A, Putnam CD, Kolodner RD (2011) Mismatch repair, but not heteroduplex rejection, is temporally coupled to DNA replication. Science 334(6063):1713–1716. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Karras GI, Jentsch S (2010) The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141(2):255–267. CrossRefPubMedGoogle Scholar
  14. 14.
    Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21(11):947–962. CrossRefGoogle Scholar
  15. 15.
    Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294(5550):2364–2368. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA
  2. 2.IFOM, the FIRC Institute of Molecular OncologyMilanItaly
  3. 3.Istituto di Genetica MolecolareConsiglio Nazionale delle Ricerche (IGM-CNR)PaviaItaly

Personalised recommendations