Skip to main content

Phospholipid Micelles for Peptide Drug Delivery

Part of the Methods in Molecular Biology book series (MIMB,volume 2000)

Abstract

Sterically stabilized micelle (SSM) is a self-assembled nanoparticle ideal for the delivery of therapeutic peptides. The PEGylated phospholipid forming the particle, DSPE-PEG2000, is a safe, biocompatible, and biodegradable ingredient already approved for human use in the marketed product Doxil®. SSM can overcome formulation difficulties such as instability associated with peptide drugs, enabling their development for clinical application. The key advantage of this lipid-based nanocarrier is its simple preparation even at large scales, which allows easy transition to the clinics and the pharmaceutical market. In this chapter, we describe methods for preparation and characterization of peptides self-associated with SSM (peptide–SSM). We also discuss approaches to evaluate the biological activity of the peptide nanomedicines in vitro and in vivo.

Key words

  • Sterically stabilized micelles
  • DSPE-PEG2000
  • Peptide drug delivery
  • Micellar nanocarrier
  • Vasoactive intestinal peptide
  • Glucagon-like peptide 1
  • Pancreatic polypeptide
  • Neuropeptide Y
  • Pituitary adenylate cyclase activating polypeptide
  • Glucose-dependent insulinotropic peptide

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-9516-5_4
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-9516-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Des 81(1):136–147

    CAS  CrossRef  Google Scholar 

  2. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20(1):122–128

    CAS  CrossRef  Google Scholar 

  3. Vukovic L, Khatib FA, Drake SP, Madriaga A, Brandenburg KS, Král P, Onyuksel H (2011) Structure and dynamics of highly PEG-ylated sterically stabilized micelles in aqueous media. J Am Chem Soc 133(34):13481–13488

    CAS  CrossRef  Google Scholar 

  4. Ashok B, Arleth L, Hjelm RP, Rubinstein I, Önyüksel H (2004) In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. J Pharm Sci 93(10):2476–2487

    CAS  CrossRef  Google Scholar 

  5. Banerjee A, Onyuksel H (2012) Peptide delivery using phospholipid micelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(5):562–574

    CAS  CrossRef  Google Scholar 

  6. Lim SB, Banerjee A, Önyüksel H (2012) Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 163(1):34–45

    CAS  CrossRef  Google Scholar 

  7. Sethi V, Rubinstein I, Kuzmis A, Kastrissios H, Artwohl J, Onyuksel H (2013) Novel, biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol Pharm 10(2):728–738

    CAS  CrossRef  Google Scholar 

  8. Khaja FA, Koo O, Onyuksel H (2012) Nanomedicines for inflammatory diseases. Methods Enzymol 508:355–375

    CAS  CrossRef  Google Scholar 

  9. Bak A, Leung D, Barrett SE, Forster S, Minnihan EC, Leithead AW, Cunningham J, Toussaint N, Crocker LS (2015) Physicochemical and formulation developability assessment for therapeutic peptide delivery—a primer. AAPS J 17(1):144–155

    CAS  CrossRef  Google Scholar 

  10. Vuković L, Madriaga A, Kuzmis A, Banerjee A, Tang A, Tao K, Shah N, Král P, Onyuksel H (2013) Solubilization of therapeutic agents in micellar nanomedicines. Langmuir 29(51):15747–15754

    CrossRef  Google Scholar 

  11. Krishnadas A, Onyuksel H, Rubinstein I (2003) Interactions of VIP, secretin and PACAP1–38 with phospholipids: a biological paradox revisited. Curr Pharm Des 9(12):1005–1012

    CAS  CrossRef  Google Scholar 

  12. Yuan Z, Syed M, Panchal D, Joo M, Bedi C, Lim S, Onyuksel H, Rubinstein I, Colonna M, Sadikot RT (2016) TREM-1-accentuated lung injury via miR-155 is inhibited by LP17 nanomedicine. Am J Physiol Lung Cell Mol Physiol 310(5):L426–L438

    CrossRef  Google Scholar 

  13. Gandhi S, Rubinstein I, Tsueshita T, Onyuksel H (2002) Secretin self-assembles and interacts spontaneously with phospholipids in vitro. Peptides 23(1):201–204

    CAS  CrossRef  Google Scholar 

  14. Gandhi S, Tsueshita T, Önyüksel H, Chandiwala R, Rubinstein I (2002) Interactions of human secretin with sterically stabilized phospholipid micelles amplify peptide-induced vasodilation in vivo. Peptides 23(8):1433–1439

    CAS  CrossRef  Google Scholar 

  15. Önyüksel H, Ikezaki H, Patel M, Gao X-P, Rubinstein I (1999) A novel formulation of VIP in sterically stabilized micelles amplifies vasodilation in vivo. Pharm Res 16(1):155–160

    CrossRef  Google Scholar 

  16. Lim SB, Rubinstein I, Önyüksel H (2008) Freeze drying of peptide drugs self-associated with long-circulating, biocompatible and biodegradable sterically stabilized phospholipid nanomicelles. Int J Pharm 356(1):345–350

    CAS  CrossRef  Google Scholar 

  17. Lim SB, Rubinstein I, Sadikot RT, Artwohl JE, Önyüksel H (2011) A novel peptide nanomedicine against acute lung injury: GLP-1 in phospholipid micelles. Pharm Res 28(3):662–672

    CAS  CrossRef  Google Scholar 

  18. Anbazhagan AN, Thaqi M, Priyamvada S, Jayawardena D, Kumar A, Gujral T, Chatterjee I, Mugarza E, Saksena S, Onyuksel H (2017) GLP-1 nanomedicine alleviates gut inflammation. Nanomedicine 13(2):659–665

    CAS  CrossRef  Google Scholar 

  19. Kuzmis A, Lim SB, Desai E, Jeon E, Lee B-S, Rubinstein I, Önyüksel H (2011) Micellar nanomedicine of human neuropeptide Y. Nanomedicine 7(4):464–471

    CAS  CrossRef  Google Scholar 

  20. Banerjee A, Onyuksel H (2012) Human pancreatic polypeptide in a phospholipid-based micellar formulation. Pharm Res 29(6):1698–1711

    CAS  CrossRef  Google Scholar 

  21. Banerjee A, Onyuksel H (2013) A novel peptide nanomedicine for treatment of pancreatogenic diabetes. Nanomedicine 9(6):722–728

    CAS  CrossRef  Google Scholar 

  22. Tsueshita T, Gandhi S, Önyüksel H, Rubinstein I (2002) Phospholipids modulate the biophysical properties and vasoactivity of PACAP-(1—38). J Appl Physiol 93(4):1377–1383

    CAS  CrossRef  Google Scholar 

  23. Rubinstein I, Lim SB, Jeon E, Onyuksel H (2007) Human GLP-1 {alpha} and GIP {alpha}: novel, long-acting nanomedicines for type II diabetes mellitus. FASEB J 21(5):A434

    Google Scholar 

  24. Kaszuba M, McKnight D, Connah MT, McNeil-Watson FK, Nobbmann U (2008) Measuring sub nanometre sizes using dynamic light scattering. J Nanopart Res 10(5):823–829

    CAS  CrossRef  Google Scholar 

  25. Chung LA, Lear JD, DeGrado WF (1992) Fluorescence studies of the secondary structure and orientation of a model ion channel peptide in phospholipid vesicles. Biochemistry 31(28):6608–6616

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayat Onyuksel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Esparza, K., Jayawardena, D., Onyuksel, H. (2019). Phospholipid Micelles for Peptide Drug Delivery. In: Weissig, V., Elbayoumi, T. (eds) Pharmaceutical Nanotechnology. Methods in Molecular Biology, vol 2000. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9516-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9516-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9515-8

  • Online ISBN: 978-1-4939-9516-5

  • eBook Packages: Springer Protocols