Skip to main content

Physicochemical Characterization of Phthalocyanine-Functionalized Quantum Dots by Capillary Electrophoresis Coupled to a LED Fluorescence Detector

  • Protocol
  • First Online:
Pharmaceutical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2000))

Abstract

Capillary zone electrophoresis (CZE) complemented with Taylor Dispersion Analysis-CE (TDA-CE) was developed to physicochemically characterize phthalocyanine-capped core/shell/shell quantum dots (QDs) at various pH and ionic strengths. An LED-induced fluorescence detector was used to specifically detect the QDs. The electropherograms and taylorgrams allowed calculating the phthalocyanine-QDs (Pc-QDs) ζ-potential and size, respectively, and determining the experimental conditions for colloidal stability. This methodology allowed evidencing either a colloidal stability or an aggregation state according to the background electrolytes nature. The calculated ζ-potential values of Pc-QDs decreased when ionic strength increased, being well correlated with the aggregation of the nanoconjugates at elevated salt concentrations. For the same reason, the hydrodynamic diameter of Pc-QDs increased with increasing background electrolyte ionic strength. The use of electrokinetic methodologies has provided insights into the colloidal stability of the photosensitizer-functionalized QDs in physiologically relevant solutions and, thereby, its usefulness for improving their design and applications for photodynamic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breger J, Delehanty JB, Medintz IL (2015) Continuing progress toward controlled intracellular delivery of semiconductor quantum dots. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(2):131–151. https://doi.org/10.1002/wnan.1281

    Article  CAS  PubMed  Google Scholar 

  2. Mussa Farkhani S, Valizadeh A (2014) Review: three synthesis methods of CdX (X = Se, S or Te) quantum dots. IET Nanobiotechnol 8(2):59–76. https://doi.org/10.1049/iet-nbt.2012.0028

    Article  CAS  PubMed  Google Scholar 

  3. Volkov Y (2015) Quantum dots in nanomedicine: recent trends, advances and unresolved issues. Biochem Biophys Res Commun 468(3):419–427. https://doi.org/10.1016/j.bbrc.2015.07.039

    Article  CAS  PubMed  Google Scholar 

  4. Maysinger D, Ji J, Hutter E, Cooper E (2015) Nanoparticle-based and bioengineered probes and sensors to detect physiological and pathological biomarkers in neural cells. Front Neurosci 9:480. https://doi.org/10.3389/fnins.2015.00480

    Article  PubMed  PubMed Central  Google Scholar 

  5. Petryayeva E, Algar WR, Medintz IL (2013) Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 67(3):215–252. https://doi.org/10.1366/12-06948

    Article  CAS  PubMed  Google Scholar 

  6. Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115(4):1990–2042. https://doi.org/10.1021/cr5004198

    Article  CAS  PubMed  Google Scholar 

  7. Oluwole DO, Nyokong T (2015) Physicochemical behavior of nanohybrids of mono and tetra substituted carboxyphenoxy phthalocyanine covalently linked to GSH–CdTe/CdS/ZnS quantum dots. Polyhedron 87:8–16. https://doi.org/10.1016/j.poly.2014.10.024

    Article  CAS  Google Scholar 

  8. Oluwole DO, Nyokong T (2015) Comparative photophysicochemical behavior of nanoconjugates of indium tetracarboxyphenoxy phthalocyanines covalently linked to CdTe/ZnSe/ZnO quantum dots. J Photochem Photobiol A Chem 312:34–44. https://doi.org/10.1016/j.jphotochem.2015.07.009

    Article  CAS  Google Scholar 

  9. Oluwole DO, Britton J, Mashazi P, Nyokong T (2015) Synthesis and photophysical properties of nanocomposites of aluminum tetrasulfonated phthalocyanine covalently linked to glutathione capped CdTe/CdS/ZnS quantum dots. Synth Met 205:212–221. https://doi.org/10.1016/j.synthmet.2015.04.015

    Article  CAS  Google Scholar 

  10. Li L, Huh KM (2014) Polymeric nanocarrier systems for photodynamic therapy. Biomater Res 18:19

    Article  CAS  Google Scholar 

  11. Ramírez-García G, Oluwole DO, Nxele SR, d’Orlyé F, Nyokong T, Bedioui F, Varenne A (2017) Characterization of phthalocyanine functionalized quantum dots by dynamic light scattering, laser Doppler, and capillary electrophoresis. Anal Bioanal Chem 409(6):1707–1715. https://doi.org/10.1007/s00216-016-0120-x

    Article  CAS  PubMed  Google Scholar 

  12. Li YQ, Wang HQ, Wang JH, Guan LY, Liu BF, Zhao YD, Chen H (2009) A highly efficient capillary electrophoresis-based method for size determination of water-soluble CdSe/ZnS core-shell quantum dots. Anal Chim Acta 647(2):219–225. https://doi.org/10.1016/j.aca.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  13. Stewart DTR, Celiz MD, Vicente G, Colón LA, Aga DS (2011) Potential use of capillary zone electrophoresis in size characterization of quantum dots for environmental studies. TrAC Trends Anal Chem TrAC 30(1):113–122. https://doi.org/10.1016/j.trac.2010.10.005

    Article  CAS  Google Scholar 

  14. Sang F, Huang X, Ren J (2014) Characterization and separation of semiconductor quantum dots and their conjugates by capillary electrophoresis. Electrophoresis 35(6):793–803. https://doi.org/10.1002/elps.201300528

    Article  CAS  PubMed  Google Scholar 

  15. Trapiella-Alfonso L, d’Orlyé F, Varenne A (2016) Recent advances in the development of capillary electrophoresis methodologies for optimizing, controlling, and characterizing the synthesis, functionalization, and physicochemical, properties of nanoparticles. Anal Bioanal Chem 408(11):2669–2675. https://doi.org/10.1007/s00216-015-9236-7

    Article  CAS  PubMed  Google Scholar 

  16. Radko SP, Chrambach A (2002) Separation and characterization of sub-mu m- and mu m-sized particles by capillary zone electrophoresis. Electrophoresis 23(13):1957–1972. https://doi.org/10.1002/1522-2683(200207)23:13<1957::aid-elps1957>3.0.co;2-i

    Article  CAS  PubMed  Google Scholar 

  17. d’Orlye F, Varenne A, Georgelin T, Siaugue JM, Teste B, Descroix S, Gareil P (2009) Charge-based characterization of nanometric cationic bifunctional maghemite/silica core/shell particles by capillary zone electrophoresis. Electrophoresis 30(14):2572–2582. https://doi.org/10.1002/elps.200800835

    Article  CAS  PubMed  Google Scholar 

  18. d’Orlyé F, Varenne A, Gareil P (2008) Determination of nanoparticle diffusion coefficients by Taylor dispersion analysis using a capillary electrophoresis instrument. J Chromatogr A 1204(2):226–232. https://doi.org/10.1016/j.chroma.2008.08.008

    Article  Google Scholar 

  19. Wang YH, Wang L (2007) Defect states in Nd3+−doped CaAl2O4 : Eu2+. J Appl Phys 101(5):Artn 053108. https://doi.org/10.1063/1.2435822

    Article  CAS  Google Scholar 

  20. Fourest B, Hakem N, Guillaumont R (1994) Characterization of colloids by measurement of their mobilities. Radiochim Acta 66-67. https://doi.org/10.1524/ract.1994.6667.special-issue.173

  21. Milanova D, Chambers RD, Bahga SS, Santiago JG (2011) Electrophoretic mobility measurements of fluorescent dyes using on-chip capillary electrophoresis. Electrophoresis 32(22):3286–3294. https://doi.org/10.1002/elps.201100210

    Article  CAS  PubMed  Google Scholar 

  22. Taylor G (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc Royal Soc Lond A Math Phys Eng Sci 219(1137):186–203. https://doi.org/10.1098/rspa.1953.0139

    Article  CAS  Google Scholar 

  23. Pyell U, Jalil AH, Pfeiffer C, Pelaz B, Parak WJ (2015) Characterization of gold nanoparticles with different hydrophilic coatings via capillary electrophoresis and Taylor dispersion analysis. Part I: determination of the zeta potential employing a modified analytic approximation. J Colloid Interface Sci 450:288–300. https://doi.org/10.1016/j.jcis.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  24. Pyell U, Jalil AH, Urban DA, Pfeiffer C, Pelaz B, Parak WJ (2015) Characterization of hydrophilic coated gold nanoparticles via capillary electrophoresis and Taylor dispersion analysis. Part II: Determination of the hydrodynamic radius distribution - Comparison with asymmetric flow field-flow fractionation. J Colloid Interface Sci 457:131–140. https://doi.org/10.1016/j.jcis.2015.06.042

    Article  CAS  PubMed  Google Scholar 

  25. Aris R (1956) On the dispersion of a solute in a fluid flowing through a tube. Proc Royal Soc Lond A Math Phys Eng Sci 235(1200):67–77. https://doi.org/10.1098/rspa.1956.0065

    Article  Google Scholar 

  26. Wu L, Zhang J, Watanabe W (2011) Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev 63(6):456–469. https://doi.org/10.1016/j.addr.2011.02.001

    Article  CAS  Google Scholar 

  27. Kuzovkov VN, Kotomin EA (2014) Static and dynamic screening effects in the electrostatic self-assembly of nano-particles. Phys Chem Chem Phys 16(46):25449–25460. https://doi.org/10.1039/C4CP02448F

    Article  CAS  PubMed  Google Scholar 

  28. Hoo CM, Starostin N, West P, Mecartney ML (2008) A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J Nanopart Res 10(1):89–96. https://doi.org/10.1007/s11051-008-9435-7

    Article  CAS  Google Scholar 

  29. Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL (2011) Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem 83(12):4453–4488. https://doi.org/10.1021/ac200853a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Department of Science and Technology (DST) and National Research Foundation (NRF) of South Africa, through the DST/NRF South African Research Chairs Initiative for Professor of Medicinal Chemistry and Nanotechnology (UID = 62620) and Rhodes University and by DST/Mintek Nanotechnology Innovation Centre (NIC). GRG is grateful to the Mexican National Council for Science and Technology (CONACYT). The authors acknowledge financial support from PROTEA Project 33885ZJ (France–South Africa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Varenne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramírez-García, G., d’Orlyé, F., Nyokong, T., Bedioui, F., Varenne, A. (2019). Physicochemical Characterization of Phthalocyanine-Functionalized Quantum Dots by Capillary Electrophoresis Coupled to a LED Fluorescence Detector. In: Weissig, V., Elbayoumi, T. (eds) Pharmaceutical Nanotechnology. Methods in Molecular Biology, vol 2000. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9516-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9516-5_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9515-8

  • Online ISBN: 978-1-4939-9516-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics