Skip to main content

Partially Polymerized Phospholipid Vesicles for Efficient Delivery of Macromolecules

  • Protocol
  • First Online:
Pharmaceutical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2000))

  • 2005 Accesses

Abstract

Lipid-based vesicles, namely cationic liposomal nanocarriers have been recognized early on as one of the most attractive delivery systems for RNA, protein, and oligonucleotides. Despite several advantages of conventional liposomal carriers for therapeutic macromolecules, their flexible and unsupported bilayered membranes can pose some limitations for efficient intracellular delivery of their sensitive cargos. Hence, polymerized liposomes, a concept conceived about 20 years ago, might offer structural solution to current in vivo efficiency concerns affecting traditional cationic phospholipid vectors, especially when adapted to enable superior loading and stability, typically required for effective intracellular delivery of proteins and polynucleotides.

Our recent approach attempted to remodel polymerized liposomal vesicles—specifically their semi-rigid membrane structure—to create block-polymerized bilayered vesicles (generally composed of DOTAP: DOPE: Diyne PC in 0.1:1:1 molar ratio). Adopting a modified freeze-dry-rehydration technique allowed modular reassembly of such partially polymerized lipidic vesicles (PPL). Different prototype cationic partially polymerized liposomal preparations (PPLs) were successfully developed (mean particle size range 150–300 nm), demonstrating enhanced physicochemical stability and loading capacity, thus promoting improved intracellular delivery of model RNAi and protein cargos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santel A, Aleku M, Keil O, Endruschat J, Esche V, Durieux B, Loffler K, Fechtner M, Rohl T, Fisch G, Dames S, Arnold W, Giese K, Klippel A, Kaufmann J (2006) RNA interference in the mouse vascular endothelium by systemic administration of siRNA-lipoplexes for cancer therapy. Gene Ther 13:1360–1370

    Article  CAS  Google Scholar 

  2. Nabel GJ, Nabel EG, Yang ZY, Fox BA, Plautz GE, Gao X, Huang L, Shu S, Gordon D, Chang AE (1993) Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci U S A 90:11307–11311

    Article  CAS  Google Scholar 

  3. Gill DR, Southern KW, Mofford KA, Seddon T, Huang L, Sorgi F, Thomson A, MacVinish LJ, Ratcliff R, Bilton D, Lane DJ, Littlewood JM, Webb AK, Middleton PG, Colledge WH, Cuthbert AW, Evans MJ, Higgins CF, Hyde SC (1997) A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther 4:199–209

    Article  CAS  Google Scholar 

  4. Auguste DT, Furman K, Wong A, Fuller J, Armes SP, Deming TJ, Langer R (2008) Triggered release of siRNA from poly(ethylene glycol)-protected, pH-dependent liposomes. J Control Release 130:266–274

    Article  CAS  Google Scholar 

  5. Akinc A, Goldberg M, Qin J, Dorkin JR, Gamba-Vitalo C, Maier M, Jayaprakash KN, Jayaraman M, Rajeev KG, Manoharan M, Koteliansky V, Rohl I, Leshchiner ES, Langer R, Anderson DG (2009) Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol Ther 17:872–879

    Article  CAS  Google Scholar 

  6. Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, Butler D, Charisse K, Dorkin R, Fan Y, Gamba-Vitalo C, Hadwiger P, Jayaraman M, John M, Jayaprakash KN, Maier M, Nechev L, Rajeev KG, Read T, Rohl I, Soutschek J, Tan P, Wong J, Wang G, Zimmermann T, de Fougerolles A, Vornlocher HP, Langer R, Anderson DG, Manoharan M, Koteliansky V, Horton JD, Fitzgerald K (2008) Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci U S A 105:11915–11920

    Article  CAS  Google Scholar 

  7. Nguyen DN, Chen SC, Lu J, Goldberg M, Kim P, Sprague A, Novobrantseva T, Sherman J, Shulga-Morskaya S, de Fougerolles A, Chen J, Langer R, Anderson DG (2009) Drug delivery-mediated control of RNA immunostimulation. Mol Ther 17:1555–1562

    Article  CAS  Google Scholar 

  8. Wu SY, McMillan NA (2009) Lipidic systems for in vivo siRNA delivery. AAPS J 11(4):639–652

    Article  CAS  Google Scholar 

  9. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138

    Article  CAS  Google Scholar 

  10. Huang YH, Bao Y, Peng W, Goldberg M, Love K, Bumcrot DA, Cole G, Langer R, Anderson DG, Sawicki JA (2009) Claudin-3 gene silencing with siRNA suppresses ovarian tumor growth and metastasis. Proc Natl Acad Sci U S A 106:3426–3430

    Article  CAS  Google Scholar 

  11. Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, Bacallado SA, Nguyen DN, Fuller J, Alvarez R, Borodovsky A, Borland T, Constien R, de Fougerolles A, Dorkin JR, Narayanannair Jayaprakash K, Jayaraman M, John M, Koteliansky V, Manoharan M, Nechev L, Qin J, Racie T, Raitcheva D, Rajeev KG, Sah DW, Soutschek J, Toudjarska I, Vornlocher HP, Zimmermann TS, Langer R, Anderson DG (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26:561–569

    Article  CAS  Google Scholar 

  12. Weissmann G, Finkelstein M (1980) Uptake of enzyme-bearing liposomes by cells in vivo and in vitro. In: Gregoriadis G, Allison AC (eds) Liposomes in biological systems. Wiley, New York, NY, pp 153–162

    Google Scholar 

  13. Kirby C, Clarke J, Gregoriadis G (1980) Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J 186:591–598

    Article  CAS  Google Scholar 

  14. Torchilin VP, Weissig V (2003) Liposomes: a practical approach, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  15. Chen H, Torchilin V, Langer R (1996) Lectin-bearing polymerized liposomes as potential oral vaccine carriers. Pharm Res 13:1378–1383

    Article  CAS  Google Scholar 

  16. Alonso-Romanowski S, Chiaramoni NS, Lioy VS, Gargini RA, Viera LI, Taira MC (2003) Characterization of diacetylenic liposomes as carriers for oral vaccines. Chem Phys Lipids 122:191–203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Elbayoumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Goshi, M., Pytel, N., Elbayoumi, T. (2019). Partially Polymerized Phospholipid Vesicles for Efficient Delivery of Macromolecules. In: Weissig, V., Elbayoumi, T. (eds) Pharmaceutical Nanotechnology. Methods in Molecular Biology, vol 2000. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9516-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9516-5_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9515-8

  • Online ISBN: 978-1-4939-9516-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics