Skip to main content

Conjugation of Triphenylphosphonium Cation to Hydrophobic Moieties to Prepare Mitochondria-Targeting Nanocarriers

  • Protocol
  • First Online:
Pharmaceutical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2000))

Abstract

The contribution of mitochondrial dysfunctions to diseases such as cancer, diabetes, cardiovascular, and neurodegenerative diseases has made mitochondria an attractive pharmacological target. To deliver biologically active molecules to mitochondria, however, cellular and mitochondrial barriers must be first overcome. The mitochondrial transmembrane electric potential (negative inside) is among the most commonly used strategies to deliver molecules to mitochondria as it allows the accumulation of positively charged molecules. Thus, therapeutic molecules are either covalently conjugated to lipophilic cations like triphenylphosphonium (TPP) or loaded into nanocarriers conjugated to TPP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frantz MC, Wipf P (2010) Mitochondria as a target in treatment. Environ Mol Mutagen 51:462–475

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Reily C, Mitchell T, Chacko BK et al (2013) Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox Biol 1:86–93

    Article  CAS  Google Scholar 

  3. Olszewska A, Szewczyk A (2013) Mitochondria as a pharmacological target: magnum overview. IUBMB Life 65:273–281

    Article  CAS  Google Scholar 

  4. Szewczyk A, Wojtczak L (2002) Mitochondria as a pharmacological target. Pharmacol Rev 54:101–127

    Article  CAS  Google Scholar 

  5. Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464

    Article  CAS  Google Scholar 

  6. Malty RH, Jessulat M, Jin K et al (2015) Mitochondrial targets for pharmacological intervention in human disease. Proteome Res 14:5–21

    Article  CAS  Google Scholar 

  7. Wongrakpanich A, Geary SM, Joiner MA et al (2014) Mitochondria-targeting particles. Nanomed 9:2531–2543

    Article  CAS  Google Scholar 

  8. Agrawal U, Sharma R, Vyas SP (2015) Targeted drug delivery to the mitochondria. In: Devarajan PV, Jain S (eds) Targeted drug delivery: concepts and design. Advances in delivery sciences and technology. Springer

    Google Scholar 

  9. Murphy MP (2008) Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 1777:1028–1031

    Article  CAS  Google Scholar 

  10. Smith RAJ, Porteous CM, Gane AM et al (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci 100:5407–5412

    Article  CAS  Google Scholar 

  11. Liberman EA, Topaly VP, Tsofina LM et al (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222:1076–1078

    Article  CAS  Google Scholar 

  12. Murphy MP (2001) Development of lipophilic cations as therapies for disorders due to mitochondrial dysfunction. Expert Opin Biol Ther 1:753–764

    Article  CAS  Google Scholar 

  13. Murphy MP, Smith RAJ (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656

    Article  CAS  Google Scholar 

  14. Murphy MP (1997) Selective targeting of bioactive compounds to mitochondria. Trends Biotechnol 15:326–330

    Article  CAS  Google Scholar 

  15. Smith RAJ, Hartley RC, Cochemé HM et al (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 3:341–352

    Article  Google Scholar 

  16. Kelso GF, Porteous CM, Hughes G et al (2002) Prevention of mitochondrial oxidative damage using targeted antioxidants. Ann N Y Acad Sci 959:263–274

    Article  CAS  Google Scholar 

  17. Zhang XY, Zhang PY (2016) Mitochondria targeting nano agents in cancer therapeutics. Oncol Lett 12:4887–4890

    Article  CAS  Google Scholar 

  18. Boddapati SV, Tongcharoensirikul P, Hanson RN et al (2005) Mitochondriotropic liposomes. J Liposome Res 15:49–58

    Article  CAS  Google Scholar 

  19. Weissig V (2003) Mitochondrial-targeted drug and DNA delivery. Crit Rev Ther Drug Carrier Syst 20:1–62

    Article  CAS  Google Scholar 

  20. Yamada Y, Harashima H (2008) Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Adv Drug Deliv Rev 60:1439–1462

    Article  CAS  Google Scholar 

  21. Boddapati SV, D’Souza GGM, Weissig V (2010) Liposomes for drug delivery to mitochondria. Methods Mol Biol 605:295–303

    Article  CAS  Google Scholar 

  22. Biswas S, Dodwadkar NS, Piroyan A et al (2012) Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 33:4773–4782

    Article  CAS  Google Scholar 

  23. Guzman-Villanueva D, Mendiola MR, Nguyen HX et al (2015) Influence of triphenylphosphonium (TPP) cation hydrophobization with phospholipids on cellular toxicity and mitochondrial selectivity. SOJ Pharma Pharm Sci 2:1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guzman-Villanueva, D., Mendiola, M.R., Nguyen, H.X., Yambao, F., Yu, N., Weissig, V. (2019). Conjugation of Triphenylphosphonium Cation to Hydrophobic Moieties to Prepare Mitochondria-Targeting Nanocarriers. In: Weissig, V., Elbayoumi, T. (eds) Pharmaceutical Nanotechnology. Methods in Molecular Biology, vol 2000. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9516-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9516-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9515-8

  • Online ISBN: 978-1-4939-9516-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics