Skip to main content

Nanovesicles for Nanomedicine: Theory and Practices

  • Protocol
  • First Online:
Pharmaceutical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2000))

Abstract

Lipid-based nanovesicles such as liposomes, niosomes, and ethosomes are now well recognized as potential candidates for drug delivery and theranostic applications. Some of them have already stepped forward from laboratory to market. The property to entrap lipophilic drugs in their bilayers and hydrophilic drugs in the aqueous milieu makes them a unique carrier for drug delivery. Delivery of drugs/diagnostics to various organs/tissues/cells via nanovesicles is considered to be a topic of long-standing interest with new challenges being posed to formulation scientists with new developments. The key challenge in this context is the physiological and pathological conditions, which make the delivery of drugs extremely difficult at the disease locus and makes their precise delivery ineffective. This chapter gives an insight into the role of novel nanovesicles in the field of drug delivery. We present an overview of the formulation and characterization and role of diverse nanovesicles. A comprehensive update about their application and current as well as potential challenges have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cevc G (2004) Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev 56:675–711

    Article  CAS  Google Scholar 

  2. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Article  CAS  Google Scholar 

  3. Barry BW (2002) Drug delivery routes in skin: a novel approach. Adv Drug Deliv Rev 54:S31–S40

    Article  CAS  Google Scholar 

  4. Bangham AD, Standish MM, Watkins JC et al (1967) The diffusion of ions from a phospholipid model membrane system. Protoplasma 63:183–187

    Article  CAS  Google Scholar 

  5. Papahadjopoulos D, Watkins JC (1967) Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals. Biochim Biophys Acta 135:639–652

    Article  CAS  Google Scholar 

  6. Deamer DW (2010) From “Banghasomes” to liposomes: a memoir of Alec Bangham, 1921–2010. FASEB J 24:1308–1310

    Article  CAS  Google Scholar 

  7. Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298:1015–1019

    Article  CAS  Google Scholar 

  8. Gregoriadis G, Ryman BE (1971) Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem J 124:58P

    Article  CAS  Google Scholar 

  9. Gregoriadis G (1973) Drug entrapment in liposomes. FEBS Lett 36:292–296

    Article  CAS  Google Scholar 

  10. Gregoriadis G (1976) The carrier potential of liposomes in biology and medicine. Part 1. N Engl J Med 295:704–710

    Article  CAS  Google Scholar 

  11. Gregoriadis G (1976) The carrier potential of liposomes in biology and medicine. Part 2. N Engl J Med 295:765–770

    Article  CAS  Google Scholar 

  12. Biju SS, Talegaonkar S, Mishra PR et al (2006) Vesicular systems: an overview. Indian J Pharm Sci 68:141–153

    Article  CAS  Google Scholar 

  13. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  Google Scholar 

  14. Kajimoto K, Yamamoto M, Watanabe M et al (2011) Noninvasive and persistent transfollicular drug delivery system using a combination of liposomes and iontophoresis. Int J Pharm 403:57–65

    Article  CAS  Google Scholar 

  15. Honeywell-Nguyen PL, Bouwstra JA (2005) Vesicles as a tool for transdermal and dermal delivery. Drug Discov Today Technol 2:67–74

    Article  CAS  Google Scholar 

  16. Redziniak G (2003) Liposomes et peau: passé, présent, futur. Pathol Biol 51:279–281

    Article  CAS  Google Scholar 

  17. Uchegbu IF, Vyas SP (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172:33–70

    Article  CAS  Google Scholar 

  18. Uchegbu I (1998) The biodistribution of novel 200-nm palmitoyl muramic acid vesicles. Int J Pharm 162:19–27

    Article  CAS  Google Scholar 

  19. Cevc G, Blume G (2004) Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage. Biochim Biophys Acta 1663:61–73

    Article  CAS  Google Scholar 

  20. Cevc G, Mazgareanu S, Rother M (2008) Preclinical characterisation of NSAIDs in ultradeformable carriers or conventional topical gels. Int J Pharm 360:29–39

    Article  CAS  Google Scholar 

  21. Rahman YE, Rosenthal MW, Cerny EA et al (1974) Preparation and prolonged tissue retention of liposome-encapsulated chelating agents. J Lab Clin Med 83:640–647

    CAS  PubMed  Google Scholar 

  22. Jain S, Jain NK (2008) Liposomes as drug carriers. In: Jain NK (ed) Controlled and novel drug delivery, 1st edn. CBS Publisher and Distributors, New Delhi, pp 304–352

    Google Scholar 

  23. Patel R, Singh SK, Singh S et al (2009) Development and characterization of curcumin loaded transfersome for transdermal delivery. J Pharm Sci Res 1:71–80

    Google Scholar 

  24. Vyas SP, Khar RK (2008) Targeted and controlled drug delivery, 1st edn. CBS Publishers and Distributors, New Delhi

    Google Scholar 

  25. Cevc G, Schätzlein A, Richardsen H (2002) Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim Biophys Acta 1564:21–30

    Article  CAS  Google Scholar 

  26. Trotta M, Peira E, Debernardi F et al (2002) Elastic liposomes for skin delivery of dipotassium glycyrrhizinate. Int J Pharm 241:319–327

    Article  CAS  Google Scholar 

  27. Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14:101–114

    Article  CAS  Google Scholar 

  28. van den Bergh BA, Vroom J, Gerritsen H et al (1999) Interactions of elastic and rigid vesicles with human skin in vitro: electron microscopy and two-photon excitation microscopy. Biochim Biophys Acta 1461:155–173

    Article  Google Scholar 

  29. Cevc G, Gebauer D, Stieber J et al (1998a) Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim Biophys Acta 1368:201–215

    Article  CAS  Google Scholar 

  30. Goosen C, Du Plessis J, Müller DG et al (1998b) Correlation between physicochemical characteristics, pharmacokinetic properties and transdermal absorption of NSAID’s. Int J Pharm 163:203–209

    Article  CAS  Google Scholar 

  31. Oh EK, Jin SE, Kim JK et al (2011) Retained topical delivery of 5-aminolevulinic acid using cationic ultradeformable liposomes for photodynamic therapy. Eur J Pharm Sci 44:149–157

    Article  CAS  Google Scholar 

  32. Sheo DM, Shweta A, Ram CD et al (2010) Transfersomes-A novel vesicular carrier for enhanced transdermal delivery of stavudine: development, characterization and performance evaluation. J Sci Speculat Res 1:30–36

    Google Scholar 

  33. Trotta M, Peira E, Carlotti ME (2004) Deformable liposomes for dermal administration of methotrexate. Int J Pharm 270:119–125

    Article  CAS  Google Scholar 

  34. El Zaafarany GM, Awad GA, Holayel SM et al (2010) Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm 397:164–172

    Article  Google Scholar 

  35. Kim A, Lee EH, Choi SH et al (2004) In vitro and in vivo transfection efficiency of a novel ultradeformable cationic liposome. Biomaterials 25:305–313

    Article  CAS  Google Scholar 

  36. Lau KG, Hattori Y, Chopra S et al (2005) Ultra-deformable liposomes containing bleomycin: in vitro stability and toxicity on human cutaneous keratinocyte cell lines. Int J Pharm 300:4–12

    Article  CAS  Google Scholar 

  37. Cevc G, Blume G (1992) Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1104:226–232

    Article  CAS  Google Scholar 

  38. Cevc G, Gebauer D (2003) Hydration-driven transport of deformable lipid vesicles through fine pores and the skin barrier. Biophys J 84:1010–1024

    Article  CAS  Google Scholar 

  39. Bendas ER, Tadros MI (2007) Enhanced transdermal delivery of salbutamol sulfate via ethosomes. AAPS PharmSciTech 8:213–220

    Article  Google Scholar 

  40. Touitou E, Dayan N, Bergelson L et al (2000) Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release 65:403–418

    Article  CAS  Google Scholar 

  41. Upadhyay N, Mandal S, Bhatia L et al (2011) A review on ethosomes: an emerging approach for drug delivery through the skin. Rec Res Sci Tech 3:19–24

    CAS  Google Scholar 

  42. New RRC (1999) Liposomes a practical approach, 1st edn. Oxford University Press, New York

    Google Scholar 

  43. Laouini A, Jaafar-Maalej C, Limayem-Blouza I et al (2012) Preparation, characterization and applications of liposomes: state of the art. J Colloid Sci Biotechnol 1(2):147–168

    Article  CAS  Google Scholar 

  44. Verma P, Pathak K (2012) Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine 8:489–496

    Article  CAS  Google Scholar 

  45. Chen Y, Lu Y, Chen J et al (2009) Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int J Pharm 376:153–160

    Article  CAS  Google Scholar 

  46. Agronskia A, Valentijn J, Driel L et al (2008) Integrated fluoroscense and transmission electron microscopy. J Struct Biol 164:183–189

    Article  Google Scholar 

  47. Parry K (2000) Scanning electron microscopy: an introduction. Ill-Vs Rev 13:40–44

    Google Scholar 

  48. Dragovic R, Gardiner C, Brooks A et al (2011) Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 7:780–788

    Article  CAS  Google Scholar 

  49. Kato H, Suzuki M, Fuzita K (2009) Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology accessment. Toxicol In Vitro 23:927–934

    Article  CAS  Google Scholar 

  50. Fan H, Nazari M, Raval G (2014) Utilizing zeta potential to study the effective charge, membrane partitioning and membrane permeation of lipopeptide surfactine. Biochim Biophys Acta 1838:2306–2312

    Article  CAS  Google Scholar 

  51. Marsalek R (2014) Particle size and zeta potential of ZnO. APCBEE Procedia 9:13–17

    Article  CAS  Google Scholar 

  52. Demetzos C (2008) Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J Liposome Res 18(3):159–173

    Article  CAS  Google Scholar 

  53. Song YK, Kim CK (2006) Topical delivery of low-molecular-weight heparin with surface-charged flexible liposomes. Biomaterials 27:271–280

    Article  CAS  Google Scholar 

  54. Gillet A, Lecomte F, Hubert P et al (2011) Skin penetration behaviour of liposomes as a function of their composition. Eur J Pharm Biopharm 79:43–53

    Article  CAS  Google Scholar 

  55. Ascenso A, Raposo S, Batista C et al (2015) Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. Int J Nanomedicine 10:5837–5851

    Article  CAS  Google Scholar 

  56. Garg V, Singh H, Bimbrawh S et al (2017) Ethosomes and transfersomes: principles, perspectives and practices. Curr Drug Deliv 14:613–633. https://doi.org/10.2174/1567201813666160520114436

    Article  CAS  PubMed  Google Scholar 

  57. Sharma R, Yasir M (2010) Virosomes: a novel carrier for drug delivery. Int J Pharm Tech Res 2:2327–2339

    CAS  Google Scholar 

  58. Saroja CH, Lakshmi PK, Bhaskaran S (2011) Recent trends in vaccine delivery systems: a review. Int J Pharm Invest 1:64–74

    Article  CAS  Google Scholar 

  59. Biju SS, Sushama T, Mishra PR, Khar RK (2006) Vesicular systems: An overview. Indian J Pharm Sci. 68:141–153

    Article  Google Scholar 

  60. Patel RP, Patel H, Baria AH (2009) Formulation and evaluation of liposomes of ketoconazole. Int J Drug Deliv Technol 1:16–23

    Google Scholar 

  61. Ahmad J, Singhal M, Amin S, Rizwanullah M, Akhter S, Kamal MA, Haider N, Midoux P, Pichon C (2017) Bile salt stabilized vesicles (Bilosomes): a novel nano-pharmaceutical design for oral delivery of proteins and peptides. Curr Pharm Des 23:1575–1588

    Article  CAS  Google Scholar 

  62. Paliwal R, Paliwal SR, Mishra N, Mehta A, Vyas SP (2009) Engineered chylomicron mimicking carrier emulsome for lymph targeted oral delivery of methotrexate. Int J Pharm 380:181–188

    Article  CAS  Google Scholar 

  63. Shivhare UD, Ambulkar DU, Mathur VB et al (2009) Formulation and evaluation of pentoxifylline liposome formulation. Dig J Nanomater Biostruct 4:857–862

    Google Scholar 

  64. Lasic DD, Papahadjopoulos D (eds) (1998) Applications of liposomes. Elsevier, Amsterdam

    Google Scholar 

  65. Kirpotin DB, Lasic DD, Papahadjopoulos D (1998) Medical applications of liposomes. Elsevier, Amsterdam

    Google Scholar 

  66. Posner R (2002) Liposomes. J Drugs Dermatol 1:161–164

    PubMed  Google Scholar 

  67. Conacher M, Alexander J, Brewer JM (2000) Niosomes as immunological adjuvants. In: Uchegbu IF (ed) Synthetic surfactant vesicles. International Publishers Distributors Ltd, Singapore, pp 185–205

    Google Scholar 

  68. Malhotra M, Jain NK (1994) Niosomes as drug carriers. Indian Drugs 31:81–86

    CAS  Google Scholar 

  69. Kazi KM, Mandal AS, Biswas N et al (2010) Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res 1:374–380

    Article  Google Scholar 

  70. Hafer C, Goble R, Deering P et al (1999) Formulation of interleukin-2 and interferon-alpha containing ultra deformable carriers for potential transdermal application. Anticancer Res 19:1505–1507

    Google Scholar 

  71. Duangjit S, Opanasopit P, Rojanarata T et al (2011) Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transfersomes. J Drug Deliv 2011:418316. https://doi.org/10.1155/2011/418316

    Article  CAS  PubMed  Google Scholar 

  72. Cevc G (1996) Transferosomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst 13:257–388

    Article  CAS  Google Scholar 

  73. Dkeidek I, Touitou E (1999) Ethosomes: a recent approach in transdermal/topical delivery. AAPS Pharm Sci 1:202

    Google Scholar 

  74. Ehab R, Bendas L, Mina I (2007) Enhanced transdermal delivery of salbutamol sulfate via ethosomes. AAPS PharmSciTech 8:213–220

    Article  Google Scholar 

  75. Vyas SP, Khar RK (2002) Targeted and controlled drug delivery. CBS publisher, New Delhi

    Google Scholar 

  76. Lankalapalli S, Damuluri M (2012) Sphingosomes: applications in targeted drug delivery. Int J Pharm Chem Biol Sci 2:507–516

    CAS  Google Scholar 

  77. Saraf S, Gupta D, Kaur CD et al (2011) Sphingosomes a novel approach to vesicular drug delivery. Int J Curr Sci Res 1:63–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wadhwa, S., Garg, V., Gulati, M., Kapoor, B., Singh, S.K., Mittal, N. (2019). Nanovesicles for Nanomedicine: Theory and Practices. In: Weissig, V., Elbayoumi, T. (eds) Pharmaceutical Nanotechnology. Methods in Molecular Biology, vol 2000. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9516-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9516-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9515-8

  • Online ISBN: 978-1-4939-9516-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics