Abstract
Lipid membranes play a crucial role in living systems by compartmentalizing biological processes and forming a barrier between these processes and the environment. Naturally, a large apparatus of biomolecules is responsible for construction, maintenance, transport, and degradation of these lipid barriers. Additional classes of biomolecules are tasked with transport of specific substances or transduction of signals from the environment across lipid membranes. In this article, we intend to describe a set of techniques that enable one to build accurate models of lipid systems and their associated proteins, and to simulate their dynamics over a variety of time and length scales. We discuss the methods and challenges that allow us to derive structural, mechanistic, and thermodynamic information from these models. We also show how these models have recently been applied in research to study some of the most complex lipid–protein systems to date, including bacterial and viral envelopes, neuronal membranes, and mammalian signaling systems.
Key words
- Molecular dynamics (MD) simulation
- Molecular modeling
- Protein–lipid interactions
- Lipid-binding protein
- Membrane proteins
- Membrane peptides
- Multiscale
- Coarse-grained (CG) models
This is a preview of subscription content, access via your institution.
Buying options






References
Bernlohr DA, Simpson MA, Hertzel AV, Banaszak LJ (1997) Intracellular lipid-binding proteins and their genes. Annu Rev Nutr 17:277–303
De Libero G, Mori L (2005) Recognition of lipid antigens by T cells. Nat Rev Immunol 5:485–496
Russ AP, Lampel S (2005) The druggable genome: an update. Drug Discov Today 10:1607–1610
Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996
Arora A, Tamm LK (2001) Biophysical approaches to membrane protein structure determination. Curr Opin Struct Biol 11:540–547
Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–385
Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652
Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci U S A 102:6679–6685
Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:71
Ash WL, Zlomislic MR, Oloo EO, Tieleman DP (2004) Computer simulations of membrane proteins. Biochim Biophys Acta 1666:158–189
Domene C, Bond PJ, Sansom MSP (2003) Membrane protein simulations: ion channels and bacterial outer membrane proteins. In: Protein simulations. Elsevier, Amsterdam, pp 159–193
Bond PJ, Sansom MSP (2006) Insertion and assembly of membrane proteins via simulation. J Am Chem Soc 128:2697–2704
Sansom MSP, Bond P, Beckstein O et al (2008) Water in ion channels and pores-simulation studies. In: Ion channels: from atomic resolution physiology to functional genomics. John Wiley & Sons, Ltd, New York, NY, pp 66–83
Huber RG, Marzinek JK, Holdbrook DA, Bond PJ (2017) Multiscale molecular dynamics simulation approaches to the structure and dynamics of viruses. Prog Biophys Mol Biol 128:121–132
Angelescu DG, Linse P (2008) Viruses as supramolecular self-assemblies: modelling of capsid formation and genome packaging. Soft Matter 4:1981
Reddy T, Sansom MSP (2016) Computational virology: from the inside out. Biochim Biophys Acta 1858:1610–1618
Brooks BR, Brooks CL, Mackerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614
Huang J, Mackerell AD (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145
Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688
Salomon-Ferrer R, Götz AW, Poole D et al (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh ewald. J Chem Theory Comput 9:3878–3888
Schmid N, Eichenberger AP, Choutko A et al (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843
Jämbeck JPM, Lyubartsev AP (2012) Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B 116:3164–3179
Jämbeck JPM, Lyubartsev AP (2012) An extension and further validation of an all-atomistic force field for biological membranes. J Chem Theory Comput 8:2938–2948
Jämbeck JPM, Lyubartsev AP (2012) Another piece of the membrane puzzle: extending slipids further. J Chem Theory Comput 9:774–784
Ermilova I, Lyubartsev AP (2016) Extension of the slipids force field to polyunsaturated lipids. J Phys Chem B 120:12826–12842
Dickson CJ, Madej BD, Skjevik ÅA et al (2014) Lipid14: the amber lipid force field. J Chem Theory Comput 10:865–879
Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218
Berger O, Edholm O, Jähnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013
Marrink SJ, Risselada HJ, Yefimov S et al (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824
Monticelli L, Kandasamy SK, Periole X et al (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834
De Jong DH, Singh G, Bennett WFD et al (2013) Improved parameters for the martini coarse-grained protein force field. J Chem Theory Comput 9:687–697
Uusitalo JJ, Ingólfsson HI, Akhshi P et al (2015) Martini coarse-grained force field: extension to DNA. J Chem Theory Comput 11:3932–3945
Nielsen SO, Lopez CF, Srinivas G, Klein ML (2004) Coarse grain models and the computer simulation of soft materials. J Phys Condens Matter 16:R481–R512
Saunders MG, Voth GA (2013) Coarse-graining methods for computational biology. Annu Rev Biophys 42:73–93
Zhang Z, Pfaendtner J, Grafmüller A, Voth GA (2009) Defining coarse-grained representations of large biomolecules and biomolecular complexes from elastic network models. Biophys J 97:2327–2337
Noid WG, Chu JW, Ayton GS et al (2008) The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J Chem Phys 128:244114
Noid WG, Liu P, Wang Y et al (2008) The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models. J Chem Phys 128:244115
Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473
Götz AW, Williamson MJ, Xu D et al (2012) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. generalized born. J Chem Theory Comput 8:1542–1555
Shaw DE, Bowers KJ, Chow E et al (2009) Millisecond-scale molecular dynamics simulations on Anton. In: Proc Conf High Perform Comput Netw Storage Anal SC 09 1. ACM, New York, NY
Shaw DE, Grossman JP, Bank JA et al (2014) Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. In: Proceedings of the International Conference for High Performance Computing, Networking. Storage and Analysis. IEEE Press, Piscataway, NJ, USA, pp 41–53
Marzinek JK, Holdbrook DA, Huber RG et al (2016) Pushing the envelope: dengue viral membrane coaxed into shape by molecular simulations. Structure 24:1410–1420
Petrlova J, Hansen FC, van der Plas MJA et al (2017) Aggregation of thrombin-derived C-terminal fragments as a previously undisclosed host defense mechanism. Proc Natl Acad Sci U S A 114:E4213–E4222
Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242
Kleywegt GJ, Jones TA (1998) Databases in protein crystallography. Acta Crystallogr Sect D Biol Crystallogr 54:1119–1131
Wuthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York, NY
Cheng Y (2015) Single-particle Cryo-EM at crystallographic resolution. Cell 161:450–457
Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non‐crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275:1–21
Brown EN, Ramaswamy S (2007) Quality of protein crystal structures. Acta Crystallogr Sect D Biol Crystallogr 63:941–950
Hryc CF, Chen DH, Chiu W (2011) Near-atomic resolution cryo-EM for molecular virology. Curr Opin Virol 1:110–117
Carpenter EP, Beis K, Cameron AD, Iwata S (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18:581–586
Fiser A, Šali A (2003) Modeller: generation and refinement of homology-based protein structure models. In: Methods in enzymology. Elsevier, Amsterdam, pp 461–491
Sali A (2008) MODELLER a program for protein structure modeling release 9v4, r6262. Structure:779–815
Shen M, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524
Wolf MG, Hoefling M, Aponte-Santamaría C et al (2010) g_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem 31:2169–2174
Jo S, Lim JB, Klauda JB, Im W (2009) CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 97:50–58
Qi Y, Ingólfsson HI, Cheng X et al (2015) CHARMM-GUI martini maker for coarse-grained simulations with the martini force field. J Chem Theory Comput 11:4486–4494
Wassenaar TA, Ingólfsson HI, Böckmann RA et al (2015) Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11:2144–2155
Chang R, Ayton GS, Voth GA (2005) Multiscale coupling of mesoscopic- and atomistic-level lipid bilayer simulations. J Chem Phys 122:244716
Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25
Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56
Van Der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718
Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802
Sanbonmatsu KY, Tung CS (2007) High performance computing in biology: multimillion atom simulations of nanoscale systems. J Struct Biol 157:470–480
Götz AW, Williamson MJ, Xu D et al (2012) Routine microsecond molecular dynamics simulations with amber - Part I: Generalized born. J Chem Theory Comput 8:1542–1555
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(27-28):33–38
Ulmschneider MB, Sansom MSP (2001) Amino acid distributions in integral membrane protein structures. Biochim Biophys Acta 1512:1–14
Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22:623–625
Yesylevskyy SO (2007) ProtSqueeze: simple and effective automated tool for setting up membrane protein simulations. J Chem Inf Model 47:1986–1994
Faraldo-Gómez J, Smith G, Sansom M (2002) Setting up and optimization of membrane protein simulations. Eur Biophys J 31:217–227
Schmidt TH, Kandt C (2012) LAMBADA and InflateGRO2: efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations. J Chem Inf Model 52:2657–2669
Shirts MR, Mobley DL, Chodera JD (2007) Chapter 4 Alchemical free energy calculations: ready for prime time? Annu Rep Comput Chem 3:41–59
Xu C, Gagnon E, Call ME et al (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3ε cytoplasmic tyrosine-based motif. Cell 135:702–713
Shirts MR, Pande VS (2005) Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. J Chem Phys 122:134508
Jefferys E, Sands ZA, Shi J et al (2015) Alchembed: a computational method for incorporating multiple proteins into complex lipid geometries. J Chem Theory Comput 11:2743–2754
Bond PJ, Cuthbertson JM, Deol SS, Sansom MSP (2004) MD simulations of spontaneous membrane protein/detergent micelle formation. J Am Chem Soc 126:15948–15949
Scott KA, Bond PJ, Ivetac A et al (2008) Coarse-grained MD simulations of membrane protein-bilayer self-assembly. Structure 16:621–630
Saravanan R, Holdbrook DA, Petrlova J et al (2018) Structural basis for endotoxin neutralization and anti-inflammatory activity of thrombin-derived C-terminal peptides. Nat Commun 9:2762
Stansfeld PJ, Hopkinson R, Ashcroft FM, Sansom MSP (2009) PIP2-binding site in kir channels: definition by multiscale biomolecular simulations. Biochemistry 48:10926–10933
Wassenaar TA, Pluhackova K, Bockmann RA et al (2014) Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theory Comput 10:676–690
Kargas V, Marzinek JK, Holdbrook DA et al (2017) A polar SxxS motif drives assembly of the transmembrane domains of Toll-like receptor 4. Biochim Biophys Acta 1859:2086–2095
Irvine WA, Flanagan JU, Allison JR (2018) Computational prediction of amino acids governing protein-membrane interaction for the PIP3 cell signalling system. Structure 27:371
Wu EL, Cheng X, Jo S et al (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35:1997–2004
Cheng X, Jo S, Lee HS et al (2013) CHARMM-GUI micelle builder for pure/mixed micelle and protein/micelle complex systems. J Chem Inf Model 53:2171–2180
Michaud‐Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32:2319–2327
Huang CC, Couch GS, Pettersen EF, Ferrin TE (1996) Chimera: an extensible molecular modeling application constructed using standard components. In: Pac. Symp. Biocomput. World Scientific, Hackensack, NJ, p 724
Ingólfsson HI, Melo MN, van Eerden FJ et al (2014) Lipid organization of the plasma membrane. J Am Chem Soc 136:14554–14559
Reddy T, Sansom MSP (2016) The role of the membrane in the structure and biophysical robustness of the dengue virion envelope. Structure 24(3):375–382
Ingólfsson HI, Carpenter TS, Bhatia H et al (2017) Computational lipidomics of the neuronal plasma membrane. Biophys J 113:2271–2280
Koldsø H, Shorthouse D, Hélie J, Sansom MSP (2014) Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers. PLoS Comput Biol 10:e1003911
Vollmer W, Blanot D, De Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–167
Vollmer W, Seligman SJ (2010) Architecture of peptidoglycan: more data and more models. Trends Microbiol 18:59–66
Braun V (1975) Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim Biophys Acta 415:335–377
Koebnik R (1995) Proposal for a peptidoglycan‐associating alpha‐helical motif in the C‐terminal regions of some bacterial cell‐surface proteins. Mol Microbiol 16:1269–1270
Parsons LM, Lin F, Orban J (2006) Peptidoglycan recognition by Pal, an outer membrane lipoprotein. Biochemistry 45:2122–2128
Roujeinikova A (2008) Crystal structure of the cell wall anchor domain of MotB, a stator component of the bacterial flagellar motor: implications for peptidoglycan recognition. Proc Natl Acad Sci 105:10348–10353
Gumbart JC, Beeby M, Jensen GJ, Roux B (2014) Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations. PLoS Comput Biol 10:e1003475
Samsudin F, Ortiz-Suarez ML, Piggot TJ et al (2016) OmpA: a flexible clamp for bacterial cell wall attachment. Structure 24:2227–2235
Samsudin F, Boags A, Piggot TJ, Khalid S (2017) Braun’s lipoprotein facilitates OmpA interaction with the escherichia coli cell wall. Biophys J 113:1496–1504
Cohen EJ, Ferreira JL, Ladinsky MS et al (2017) Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane. Science 356:197–200
Zheng C, Yang L, Hoopmann MR et al (2011) Cross-linking measurements of in vivo protein complex topologies. Mol Cell Proteomics 10:M110-006841
Marcoux J, Politis A, Rinehart D et al (2014) Mass spectrometry defines the C-terminal dimerization domain and enables modeling of the structure of full-length OmpA. Structure 22:781–790
Doudou S, Burton NA, Henchman RH (2009) Standard free energy of binding from a one-dimensional potential of mean force. J Chem Theory Comput 5:909–918
Kumar S, Rosenberg JM, Bouzida D et al (1992) THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13:1011–1021
Kästner J (2011) Umbrella sampling. Wiley Interdiscip Rev Comput Mol Sci 1:932–942
Huber RG, Berglund NA, Kargas V et al (2018) A thermodynamic funnel drives bacterial lipopolysaccharide transfer in the TLR4 pathway. Structure 26:1151–1161
Lu Y-C, Yeh W-C, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145–151
Kim HM, Park BS, Kim J-I et al (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist eritoran. Cell 130:906–917
Brandenburg K, Seydel U (1984) Physical aspects of structure and function of membranes made from lipopolysaccharides and free lipid A. Biochim Biophys Acta 775:225–238
Ryu J-K, Kim SJ, Rah S-H et al (2017) Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer. Immunity 46:38. https://doi.org/10.1016/j.immuni.2016.11.007
Juan TS-C, Kelley MJ, Johnson DA et al (1995) Soluble CD14 truncated at amino acid 152 binds lipopolysaccharide (LPS) and enables cellular response to LPS. J Biol Chem 270:1382–1387
Kelley SL, Lukk T, Nair SK, Tapping RI (2013) The crystal structure of human soluble CD14 reveals a bent solenoid with a hydrophobic amino-terminal pocket. J Immunol 190:1304–1311
Kim J-I, Lee CJ, Jin MS et al (2005) Crystal structure of CD14 and its implications for lipopolysaccharide signaling. J Biol Chem 280:11347–11351
Zimmer SM, Liu J, Clayton JL et al (2008) Paclitaxel binding to human and murine MD-2. J Biol Chem 283:27916–27926
Ohto U, Fukase K, Miyake K, Shimizu T (2012) Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci U S A 109:7421–7426
Wang J, Wang W, Kollman PA, Case DA (2001) Antechamber, an accessory software package for molecular mechanical calculations. J Am Chem Soc 222:U403
Johnson GT, Autin L, Al-Alusi M et al (2014) cellPACK: a virtual mesoscope to model and visualize structural systems biology. Nat Methods 12:85–91
Sommer B, Dingersen T, Gamroth C et al (2011) CELLmicrocosmos 2.2 MembraneEditor: a modular interactive shape-based software approach to solve heterogeneous membrane packing problems. J Chem Inf Model 51:1165
Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865
Bovigny C, Tamò G, Lemmin T et al (2015) LipidBuilder: a framework to build realistic models for biological membranes. J Chem Inf Model 55:2491–2499
Durrant JD, Amaro RE (2014) LipidWrapper: an algorithm for generating large-scale membrane models of arbitrary geometry. PLoS Comput Biol 10:e1003720
Ghahremanpour MM, Arab SS, Aghazadeh SB et al (2013) MemBuilder: a web-based graphical interface to build heterogeneously mixed membrane bilayers for the GROMACS biomolecular simulation program. Bioinformatics 30:439–441
Knight CJ, Hub JS (2015) MemGen: a general web server for the setup of lipid membrane simulation systems: Fig. 1. Bioinformatics 31:2897–2899
Martinez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164
Vergara-Jaque A, Fenollar-Ferrer C, Kaufmann D, Forrest LR (2015) Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms. Front Pharmacol 6:183
Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092
Patra M, Karttunen M, Hyvönen MT et al (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J 84:3636–3645
Acknowledgments
T.S.C. and H.I.I. acknowledge that this work has been supported in part by the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) program established by the U.S. Department of Energy (DOE) and the National Cancer Institute (NCI) of the National Institutes of Health. T.S.C. and H.I.I. note that this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-752805. J.R.A. acknowledges the following sources of funding: Rutherford Discovery Fellowship (15-MAU-001); Marsden grant (15-UOA-105); New Zealand Ministry of Business, Innovation and Employment (MBIE) Endeavour Smart Ideas grant (UOCX1706); Maurice Wilkins Centre for Molecular Biodiscovery Flagship Project grant (MWC 3716850). W.A.I. was supported by the following sources of funding: Massey University Doctoral Scholarship; Massey University Doctoral Dissemination grant. N.D. thanks the Nehru trust for Cambridge University and Rajiv Gandhi (UK) foundation for funding. P.J.B. and J.K.M. acknowledge funding from the Ministry of Education in Singapore (MOE AcRF Tier 3 Grant Number MOE2012-T3-1-008).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Huber, R.G. et al. (2019). Multiscale Modeling and Simulation Approaches to Lipid–Protein Interactions. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 2003. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9512-7_1
Download citation
DOI: https://doi.org/10.1007/978-1-4939-9512-7_1
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-4939-9511-0
Online ISBN: 978-1-4939-9512-7
eBook Packages: Springer Protocols