Fluorescence Correlation Spectroscopy to Examine Protein–Lipid Interactions in Membranes

  • Viktoria Betaneli
  • Jonas Mücksch
  • Petra SchwilleEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2003)


Fluorescence correlation spectroscopy (FCS) is a versatile technique to study membrane dynamics and protein–lipid interactions. It can provide information about diffusion coefficients, concentrations, and molecular interactions of proteins and lipids in the membrane. These parameters allow for the determination of protein partitioning into different lipid environments, the identification of lipid domains, and the detection of lipid–protein complexes on the membrane. During the last decades, FCS studies were successfully performed on model membrane systems as also on living cells, to characterize protein–lipid interactions. Recent developments of the method described here improved quantitative measurements on membranes and decreased the number of potential artifacts. The aim of this chapter is to provide the reader with the necessary information and some practical guidelines to perform FCS studies on artificial and cellular membranes.

Key words

Fluorescence correlation spectroscopy FCS Cross-correlation FCCS Diffusion Model membranes Giant unilamellar vesicles Protein–lipid interactions Lipid rafts 



We thank Dr. Fabian Heinemann for the critical reading of the manuscript, Alena Khmelinskaia for discussions on the lipid monolayer protocol, and Dr. Erdinc Sezgin for the help with the protocol describing the preparation of living cells for FCS. This work was supported by the Dresden International Graduate School for Biomedicine and Bioengineering. J.M. acknowledges support from the International Max Planck Research School acknowledges support from the excellence cluster Nanosystems Initiative Munich and the International Max Planck Research School for Molecular Life Sciences.


  1. 1.
    Rigler R, Mets Ü, Widengren J et al (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:169–175CrossRefGoogle Scholar
  2. 2.
    Eigen M, Rigler R (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci U S A 91:5740–5747PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Magde D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system – measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708CrossRefGoogle Scholar
  4. 4.
    Elson EL, Magde D (1974) Fluorescence correlation spectroscopy: I. Conceptual basis and theory. Biopolymers 13:1–27CrossRefGoogle Scholar
  5. 5.
    Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy: II. An experimental realization. Biopolymers 13:29–61PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bacia K, Schuette CG, Kahya N et al (2004) SNAREs prefer liquid-disordered over “Raft” (liquid-ordered) domains when reconstituted into giant unilamellar vesicles. J Biol Chem 279:37951–37955PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Doeven MK, Folgering JHA, Krasnikov V et al (2005) Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophys J 88:1134–1142PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Salvatore C, Jonas R, Nicoletta K et al (2006) Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. Chemphyschem 7:2409–2418CrossRefGoogle Scholar
  9. 9.
    Kahya N, Brown DA, Schwille P (2005) Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry 44:7479–7489PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lagny TJ, Bassereau P (2015) Bioinspired membrane-based systems for a physical approach of cell organization and dynamics: usefulness and limitations. Interface Focus 5:20150038PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Dorn IT, Neumaier KR, Tampé R (1998) Molecular recognition of histidine-tagged molecules by metal-chelating lipids monitored by fluorescence energy transfer and correlation spectroscopy. J Am Chem Soc 120:2753–2763CrossRefGoogle Scholar
  12. 12.
    Takakuwa Y, Pack C-G, An X-L et al (1999) Fluorescence correlation spectroscopy analysis of the hydrophobic interactions of protein 4.1 with phosphatidyl serine liposomes. Biophys Chem 82:149–155PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36:176–182PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Korlach J, Schwille P, Webb WW et al (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 96:8461–8466PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Beneš M, Billy D, Hermens WT, et al (2002) Muscovite (mica) allows the characterisation of supported bilayers by ellipsometry and confocal fluorescence correlation spectroscopy.
  16. 16.
    Gudmand M, Fidorra M, Bjørnholm T et al (2009) Diffusion and partitioning of fluorescent lipid probes in phospholipid monolayers. Biophys J 96:4598–4609PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Khmelinskaia A, Mücksch J, Conci F et al (2018) FCS analysis of protein mobility on lipid monolayers. Biophys J 114:2444–2454PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Schwille P, Diez S (2009) Synthetic biology of minimal systems. Crit Rev Biochem Mol Biol 44:223–242PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ruan Q, Cheng MA, Levi M et al (2004) Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophys J 87:1260–1267PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Forstner MB, Yee CK, Parikh AN et al (2006) Lipid lateral mobility and membrane phase structure modulation by protein binding. J Am Chem Soc 128:15221–15227PubMedCrossRefGoogle Scholar
  21. 21.
    Przybylo M, Sýkora J, Humpolíčková J et al (2006) Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions. Langmuir 22:9096–9099PubMedCrossRefGoogle Scholar
  22. 22.
    Dertinger T, von der Hocht I, Benda A et al (2006) Surface sticking and lateral diffusion of lipids in supported bilayers. Langmuir 22:9339–9344PubMedCrossRefGoogle Scholar
  23. 23.
    Weiß K, Neef A, Van Q et al (2013) Quantifying the diffusion of membrane proteins and peptides in black lipid membranes with 2-focus fluorescence correlation spectroscopy. Biophys J 105:455–462PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Honigmann A, Walter C, Erdmann F et al (2010) Characterization of horizontal lipid bilayers as a model system to study lipid phase separation. Biophys J 98:2886–2894PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Rička J, Binkert T (1989) Direct measurement of a distinct correlation function by fluorescence cross correlation. Phys Rev A 39:2646–2652CrossRefGoogle Scholar
  26. 26.
    Schwille P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72:1878–1886PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bacia K, Schwille P (2007) Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2:2842–2856PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kahya N, Wiersma DA, Poolman B et al (2002) Spatial organization of bacteriorhodopsin in model membranes: light-induced mobility changes. J Biol Chem 277:39304–39311PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Betaneli V, Petrov EP, Schwille P (2012) The role of lipids in VDAC oligomerization. Biophys J 102:523–531PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Liu P, Sudhaharan T, Koh RML et al (2007) Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy. Biophys J 93:684–698PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Remigiusz W, Christian B, Sigfried H et al (2010) Focus on composition and interaction potential of single-pass transmembrane domains. Proteomics 10:4196–4208CrossRefGoogle Scholar
  32. 32.
    García-Sáez AJ, Ries J, Orzáez M et al (2009) Membrane promotes tBID interaction with BCLXL. Nat Struct Mol Biol 16:1178PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Meacci G, Ries J, Fischer-Friedrich E et al (2006) Mobility of Min-proteins in Escherichia coli measured by fluorescence correlation spectroscopy. Phys Biol 3:255PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ries J, Yu SR, Burkhardt M et al (2009) Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms. Nat Methods 6:643PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Rajendran L, Schneider A, Schlechtingen G et al (2008) Efficient inhibition of the Alzheimer’s disease β-secretase by membrane targeting. Science 320:520–523PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Cahuzac N, Baum W, Kirkin V et al (2006) Fas ligand is localized to membrane rafts, where it displays increased cell death-inducing activity. Blood 107:2384–2391PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Lasserre R, Guo X-J, Conchonaud F et al (2008) Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat Chem Biol 4:538PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kannan B, Guo L, Sudhaharan T et al (2007) Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera. Anal Chem 79:4463–4470PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Wohland T, Shi X, Sankaran J et al (2010) Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt Express 18:10627–10641PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Krieger JW, Singh AP, Bag N et al (2015) Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. Nat Protoc 10:1948PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Capoulade J, Wachsmuth M, Hufnagel L et al (2011) Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nat Biotechnol 29:835PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Hebert B, Costantino S, Wiseman PW (2005) Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys J 88:3601–3614PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Bag N, Sankaran J, Paul A et al (2012) Calibration and limits of camera-based fluorescence correlation spectroscopy: a supported lipid bilayer study. Chemphyschem 13:2784–2794PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Mücksch J, Blumhardt P, Strauss MT et al (2018) Quantifying reversible surface binding via surface-integrated fluorescence correlation spectroscopy. Nano Lett 18:3185–3192Google Scholar
  45. 45.
    Blumhardt P, Stein J, Mücksch J, Stehr F, Bauer J, Jungmann R, Schwille P (2018) Photo-induced depletion of binding sites in DNA-PAINT microscopy. Molecules 23(12):3165PubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lim KH, Huang H, Pralle A et al (2013) Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnol Bioeng 110:57–67PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bag N, Yap DHX, Wohland T (2014) Temperature dependence of diffusion in model and live cell membranes characterized by imaging fluorescence correlation spectroscopy. Biochim Biophys Acta Biomembr 1838:802–813CrossRefGoogle Scholar
  48. 48.
    Weidemann T, Wachsmuth M, Knoch TA, Müller G, Waldeck W, Langowski J (2003) Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and confocal imaging. Journal of Molecular Biology 334(2):229–240PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Ramm B, Glock P, Mücksch J, Blumhardt P, García-Soriano DA, Heymann M, Schwille P (2018) The MinDE system is a generic spatial cue for membrane protein distribution in vitro. Nat Commun 9(1)Google Scholar
  50. 50.
    Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322:549–560CrossRefGoogle Scholar
  51. 51.
    von Smoluchowski M (1906) Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann Phys 326:756–780CrossRefGoogle Scholar
  52. 52.
    Saffman PG, Delbrück M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci U S A 72:3111–3113PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hughes BD, Pailthorpe BA, White LR (1981) The translational and rotational drag on a cylinder moving in a membrane. J Fluid Mech 110:349–372CrossRefGoogle Scholar
  54. 54.
    Petrov EP, Schwille P (2008) Translational diffusion in lipid membranes beyond the Saffman-Delbrück approximation. Biophys J 94:L41–L43PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Benda A, Beneš M, Mareček V et al (2003) How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir 19:4120–4126CrossRefGoogle Scholar
  56. 56.
    Dertinger T, Pacheco V, von der Hocht I et al (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. Chemphyschem 8:433–443PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Berland KM, So PT, Chen Y et al (1996) Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation. Biophys J 71:410–420PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Petrášek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94:1437–1448PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Ries J, Schwille P (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91:1915–1924PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Chwastek G, Schwille P (2013) A monolayer assay tailored to investigate lipid-protein systems. Chemphyschem 14:1877–1881PubMedCrossRefGoogle Scholar
  61. 61.
    Vogel SK, Greiss F, Khmelinskaia A et al (2017) Control of lipid domain organization by a biomimetic contractile actomyosin cortex. Elife 6:e24350PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Herold C, Chwastek G, Schwille P et al (2012) Efficient electroformation of supergiant unilamellar vesicles containing cationic lipids on ITO-coated electrodes. Langmuir 28:5518–5521PubMedCrossRefGoogle Scholar
  63. 63.
    Korlann Y, Dertinger T, Michalet X et al (2008) Measuring diffusion with polarization-modulation dual-focus fluorescence correlation spectroscopy. Opt Express 16:14609–14616PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Petrov EP, Ohrt T, Winkler RG et al (2006) Diffusion and segmental dynamics of double-stranded DNA. Phys Rev Lett 97:258101PubMedCrossRefGoogle Scholar
  65. 65.
    Kestin J, Sokolov M, Wakeham WA (1978) Viscosity of liquid water in the range −8 °C to 150 °C. J Phys Chem Ref Data 7:941–948CrossRefGoogle Scholar
  66. 66.
    Guo L, Har JY, Sankaran J et al (2008) Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study. Chemphyschem 9:721–728PubMedCrossRefGoogle Scholar
  67. 67.
    Machán R, Hof M (2010) Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. Biochim Biophys Acta Biomembr 1798:1377–1391CrossRefGoogle Scholar
  68. 68.
    Müller P, Schwille P, Weidemann T (2014) Scanning fluorescence correlation spectroscopy (SFCS) with a scan path perpendicular to the membrane plane. Methods Mol Biol 1076:635–651PubMedCrossRefGoogle Scholar
  69. 69.
    Schätzel K (1987) Correlation techniques in dynamic light scattering. Appl Phys B Lasers Opt 42:193–213CrossRefGoogle Scholar
  70. 70.
    Ries J, Petrášek Z, García-Sáez AJ et al (2010) A comprehensive framework for fluorescence cross-correlation spectroscopy. New J Phys 12:113009CrossRefGoogle Scholar
  71. 71.
    Ries J, Chiantia S, Schwille P (2009) Accurate determination of membrane dynamics with line-scan FCS. Biophys J 96:1999–2008PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Widengren J, Mets U, Rigler R (1995) Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J Phys Chem 99:13368–13379CrossRefGoogle Scholar
  73. 73.
    Petrov EP, Schwille P (2008) State of the art and novel trends in fluorescence correlation spectroscopy. In: Standardization and quality assurance in fluorescence measurements II. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 145–197CrossRefGoogle Scholar
  74. 74.
    Gregor I, Patra D, Enderlein J (2005) Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation. Chemphyschem 6:164–170PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Müller BK, Zaychikov E, Bräuchle C et al (2005) Pulsed interleaved excitation. Biophys J 89:3508–3522PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Bacia K, Petrášek Z, Schwille P (2012) Correcting for spectral cross-talk in dual-color fluorescence cross-correlation spectroscopy. Chemphyschem 13:1221–1231PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Strömqvist J, Johansson S, Xu L et al (2011) A modified FCCS procedure applied to Ly49A-MHC class I cis-interaction studies in cell membranes. Biophys J 101:1257–1269PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wachsmuth M, Conrad C, Bulkescher J et al (2015) High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells. Nat Biotechnol 33:384PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Müller P, Schwille P, Weidemann T (2014) PyCorrFit—generic data evaluation for fluorescence correlation spectroscopy. Bioinformatics 30:2532–2533PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Angelova MI, Dimitrov DS (1986) Liposome electroformation. Faraday Discuss Chem Soc 81:303–311CrossRefGoogle Scholar
  81. 81.
    García-Sáez AJ, Carrer DC, Schwille P (2010) Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles. In: Weissig V (ed) Liposomes: methods and protocols, vol 2: Biological membrane models. Humana Press, Totowa, NJ, pp 493–508Google Scholar
  82. 82.
    Girard P, Pécréaux J, Lenoir G et al (2004) A new method for the reconstitution of membrane proteins into giant unilamellar vesicles. Biophys J 87:419–429PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kahya N (2010) Light on fluorescent lipids in rafts: a lesson from model membranes. Biochem J 430:e7–e9PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Méléard P, Bagatolli LA, Pott T (2009) Chapter 9 – Giant unilamellar vesicle electroformation: from lipid mixtures to native membranes under physiological conditions. In: Methods in enzymology. Humana Press, Totowa, NJ, pp 161–176Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Viktoria Betaneli
    • 1
  • Jonas Mücksch
    • 2
  • Petra Schwille
    • 2
    Email author
  1. 1.Medical Faculty “Carl Gustav Carus”, Institute of Physiological ChemistryTechnische Universität DresdenDresdenGermany
  2. 2.Max Planck Institute of BiochemistryMartinsriedGermany

Personalised recommendations