Skip to main content

A Guide to Tracking Single Membrane Proteins and Their Interactions in Supported Lipid Bilayers

  • Protocol
  • First Online:
Lipid-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2003))

Abstract

The purpose of this chapter is to serve as a guide for those who wish to carry out experiments tracking single proteins in planar supported biomimetic membranes. This chapter describes, in detail, the construction of a simple single molecule microscope, which includes: (1) a parts list, (2) temperature control, (3) an alignment procedure, (4) a calibration procedure, and (5) a procedure for measuring the mechanical stability of the instrument. It also gives procedures for making planar supported bilayers on hydrophilically treated borosilicate and quartz. These include (1) POPC bilayers, (2) POPC/PEG-PE cushioned bilayers, (3) POPC/PEG-PE cushioned bilayers on BSA passivated substrates, and (4) a cushioned biomimetic membrane of the endoplasmic reticulum (ER). A procedure for the detergent mediated incorporation of the transmembrane protein 5HT3A (a serotonin receptor) is also described and can be used as a starting point for other large non-self-inserting transmembrane proteins. A procedure for the detergent-free incorporation of cytochrome P450 reductase (CPR) and cytochrome P450 enzymes (P450) into an ER biomimetic is also described. The final experimental section of this chapter details different procedures for data analysis including (1) quantitative analysis of mean squared displacements from individually tracked proteins, (2) gamma distribution analysis of diffusion coefficients from a small ensemble of individually tracked proteins, (3) average mean squared displacement analysis, (4) Gaussian analysis of step-size distributions, (5) Arrhenius analysis of temperature dependent data, (6) the determination of equilibrium constants from a step-size distribution, and (7) a perspective associated with the interpretation of single particle tracking data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Needed if no optical bench is available.

  2. 2.

    All ½″ broadband dielectric mirror (BB05-E02, Thorlabs) are mounted in a kinematic mirror mount (KM05T, Thorlabs) at 7½″ above the base of the microscope using ½″ diameter by 4″ length optical posts (TR4, Thorlabs) in the appropriate post holder(UPH4, Thorlabs) and sit on a translation stage (PT1, Thorlabs).

  3. 3.

    The final power of the laser beam should be adjusted so get the best compromise between signal-to-noise ratio and the longevity of the fluorescence probe. 1 mW is a good place to start but should be optimized for each series of experiments.

References

  1. Poudel KR, Keller DJ, Brozik JA (2011) Single particle tracking reveals corralling of a transmembrane protein in a double-cushioned lipid bilayer assembly. Langmuir 27(1):320–327

    Article  CAS  PubMed  Google Scholar 

  2. Diaz AJ, Albertorio F, Daniel S, Cremer PS (2008) Double cushions preserve transmembrane protein mobility in supported bilayer systems. Langmuir 24(13):6820–6826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Isas JM, Cartailler JP, Sokolov Y, Patel DR, Langen R, Luecke H, James E, Haigler HT (2000) Annexins V and XII insert into bilayers at mildly acidic pH and form ion channels. Biochemistry 39(11):3015–3022

    Article  CAS  PubMed  Google Scholar 

  4. Barnaba C, Martinez MJ, Taylor E, Barden AO, Brozik JA (2017) Single protein tracking reveals that NADPH mediates the insertion of cytochrome P450-reductase into a biomimetic of the endoplasmic reticulum. J Am Chem Soc 139(15):5420–5430. https://doi.org/10.1021/jacs.7b00663

    Article  CAS  PubMed  Google Scholar 

  5. Barnaba C, Taylor E, Brozik JA (2017) Dissociation constants of cytochrome P450 2C9/cytochrome P450 reductase complexes in a lipid bilayer membrane depend on NADPH: a single-protein tracking study. J Am Chem Soc 139(49):17923–17934. https://doi.org/10.1021/jacs.7b08750

    Article  CAS  PubMed  Google Scholar 

  6. Poudel KR, Keller DJ, Brozik JA (2012) The effect of a phase transition on single molecule tracks of Annexin V in cushioned DMPC assemblies. Soft Matter 8(44):11285–11293

    Article  CAS  Google Scholar 

  7. Trubetskoy VS, Torchilin VP (1995) Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv Drug Deliv Rev 16(2–3):311–320

    Article  CAS  Google Scholar 

  8. Schwendener RA, Asanger M, Weder HG (1981) n-Alkyl-glucosides as detergents for the preparation of highly homogeneous bilayer liposomes of variable sizes (60–240 nm [phi]) applying defined rates of detergent removal by dialysis. Biochem Biophys Res Commun 100(3):1055–1062

    Article  CAS  PubMed  Google Scholar 

  9. Zhu J, Xue J, Guo Z, Zhang L, Marchant RE (2007) Biomimetic glycoliposomes as nanocarriers for targeting P-selectin on activated platelets. Bioconjug Chem 18(5):1366–1369

    Article  CAS  PubMed  Google Scholar 

  10. Tribet C, Audebert R, Popot JL (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci U S A 93(26):15047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Charvolin D, Perez JB, Rouvière F, Giusti F, Bazzacco P, Abdine A, Rappaport F, Martinez KL, Popot JL (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc Natl Acad Sci U S A 106(2):405

    Article  CAS  PubMed  Google Scholar 

  12. Eytan GD (1982) Use of liposomes for reconstitution of biological functions. Biochim Biophys Acta 694(2):185

    Article  CAS  PubMed  Google Scholar 

  13. Martinez KL, Gohon Y, Corringer PJ, Tribet C, Mérola F, Changeux JP, Popot JL (2002) Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett 528(1–3):251–256

    Article  CAS  PubMed  Google Scholar 

  14. Wallach DFH (1990) Lipid vesicles formed of surfactants and steroids. Google Patents

    Google Scholar 

  15. Srinivasan MP, Ratto TV, Stroeve P, Longo ML (2001) Patterned supported bilayers on self-assembled monolayers: confinement of adjacent mobile bilayers. Langmuir 17(25):7951–7954. https://doi.org/10.1021/la010776t

    Article  CAS  Google Scholar 

  16. Wagner ML, Tamm LK (2000) Tethered polymer-supported planar lipid bilayers for the reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys J 79:1400–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Albertorio F, Diaz JA, Yang T, Chapa AV, Kataoka S, Castellana TE, Cremer SP (2005) Fluid and air stable lipopolymer membranes for biosensor applications. Langmuir 21:7476–7482

    Article  CAS  PubMed  Google Scholar 

  18. Tamm LK, McConnell HM (1985) Supported phospholipid bilayers. Biophys J 47(1):105–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davis RW, Flores A, Barrick TA, Cox JM, Brozik SM, Lopez GP, Brozik JA (2007) Nanoporous microbead supported bilayers: stability, physical characterization, and incorporation of functional transmembrane proteins. Langmuir 23(7):3864–3872. https://doi.org/10.1021/la062576t

    Article  CAS  PubMed  Google Scholar 

  20. Barden AO, Goler AS, Humphreys SC, Tabatabaei S, Lochner M, Ruepp MD, Jack T, Simonin J, Thompson AJ, Jones JP, Brozik JA (2015) Tracking individual membrane proteins and their biochemistry: the power of direct observation. Neuropharmacology 98:22–30. https://doi.org/10.1016/j.neuropharm.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  21. Ruepp MD, Brozik JA, de Esch IJ, Farndale RW, Murrell-Lagnado RD, Thompson AJ (2015) A fluorescent approach for identifying P2X1 ligands. Neuropharmacology 98:13–21. https://doi.org/10.1016/j.neuropharm.2015.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hummel MA, Locuson CW, Gannett PM, Rock DA, Mosher CM, Rettie AE, Tracy TS (2005) CYP2C9 genotype-dependent effects on in vitro drug-drug interactions: switching of benzbromarone effect from inhibition to activation in the CYP2C9. 3 variant. Mol Pharmacol 68(3):644–651

    Article  CAS  PubMed  Google Scholar 

  23. Cheesman MJ, Baer BR, Zheng Y-M, Gillam EM, Rettie AE (2003) Rabbit CYP4B1 engineered for high-level expression in Escherichia coli: ligand stabilization and processing of the N-terminus and heme prosthetic group. Arch Biochem Biophys 416(1):17–24

    Article  CAS  PubMed  Google Scholar 

  24. Davison SC, Wills ED (1974) Studies on the lipid composition of the rat liver endoplasmic reticulum after induction with phenobarbitone and 20-methylcholanthrene. Biochem J 140(3):461–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fujiki Y, Fowler S, Shio H, Hubbard AL, Lazarow PB (1982) Polypeptide and phospholipid composition of the membrane of rat liver peroxisomes: comparison with endoplasmic reticulum and mitochondrial membranes. J Cell Biol 93(1):103–110

    Article  CAS  PubMed  Google Scholar 

  26. Balvers WG, Boersma MG, Vervoort J, Ouwehand A, Rietjens IMCM (1993) A specific interaction between NADPH–cytochrome reductase and phosphatidylserine and phosphatidylinositol. Eur J Biochem 218(3):1021–1029. https://doi.org/10.1111/j.1432-1033.1993.tb18461.x

    Article  CAS  PubMed  Google Scholar 

  27. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fagone P, Jackowski S (2009) Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res 50(Suppl):S311–S316. https://doi.org/10.1194/jlr.R800049-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brignac-Huber LM, Reed JR, Eyer MK, Backes WL (2013) Relationship between CYP1A2 localization and lipid microdomain formation as a function of lipid composition. Drug Metab Dispos 41(11):1896–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brignac-Huber L, Reed JR, Backes WL (2011) Organization of NADPH-cytochrome P450 reductase and CYP1A2 in the endoplasmic reticulum—microdomain localization affects monooxygenase function. Mol Pharmacol 79(3):549–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cordes T, Vogelsang J, Tinnefeld P (2009) On the mechanism of Trolox as antiblinking and antibleaching reagent. J Am Chem Soc 131(14):5018–5019. https://doi.org/10.1021/ja809117z

    Article  CAS  PubMed  Google Scholar 

  32. Kim SE, Lee IB, Hong SC (2012) The effect of the oxygen scavenging system on the pH of buffered sample solutions: in the context of single-molecule fluorescence measurements. Bull Kor Chem Soc 33(3):958–962

    Article  CAS  Google Scholar 

  33. Selvin PR, Ha T (2008) Single-molecule techniques: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  34. Cremer PS, Boxer SG (1999) Formation and spreading of lipid bilayers on planar glass supports. J Phys Chem B 103(13):2554–2559. https://doi.org/10.1021/Jp983996x

    Article  CAS  Google Scholar 

  35. Silva-Lopez EI, Edens LE, Barden AO, Keller DJ, Brozik JA (2014) Conditions for liposome adsorption and bilayer formation on BSA passivated solid supports. Chem Phys Lipids 183:91–99. https://doi.org/10.1016/j.chemphyslip.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  36. Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628):2061–2065

    Article  CAS  PubMed  Google Scholar 

  37. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179(1):298–310

    Article  CAS  Google Scholar 

  38. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26(1):373–399

    Article  CAS  PubMed  Google Scholar 

  39. Freedman D, Diaconis P (1981) On the histogram as a density estimator: L2 theory. Probab Theory Relat Fields 57(4):453–476

    Google Scholar 

  40. Saxton MJ (1997) Single-particle tracking: the distribution of diffusion coefficients. Biophys J 72(4):1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J 60(4):910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sonnleitner A, Schütz G, Schmidt T (1999) Free Brownian motion of individual lipid molecules in biomembranes. Biophys J 77(5):2638–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McCain KS, Hanley DC, Harris JM (2003) Single-molecule fluorescence trajectories for investigating molecular transport in thin silica sol-gel films. Anal Chem 75(17):4351–4359

    Article  CAS  PubMed  Google Scholar 

  44. Wilkinson GR (2005) Drug metabolism and variability among patients in drug response. N Engl J Med 352(21):2211–2221. https://doi.org/10.1056/NEJMra032424

    Article  CAS  PubMed  Google Scholar 

  45. Gaede HC, Gawrisch K (2003) Lateral diffusion rates of lipid, water, and a hydrophobic drug in a multilamellar liposome. Biophys J 85(3):1734–1740. https://doi.org/10.1016/S0006-3495(03)74603-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Almeida PF, Vaz WL, Thompson TE (1992) Lateral diffusion and percolation in two-phase, two-component lipid bilayers. Topology of the solid-phase domains in-plane and across the lipid bilayer. Biochemistry 31(31):7198–7210

    Article  CAS  PubMed  Google Scholar 

  47. Ewell RH, Eyring H (1937) Theory of the viscosity of liquids as a function of temperature and pressure. J Chem Phys 5(9):726–736. https://doi.org/10.1063/1.1750108

    Article  CAS  Google Scholar 

  48. Garner OB, Baum LG (2008) Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans 36. (Pt 6:1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wennmalm S, Simon SM (2007) Studying individual events in biology. Annu Rev Biochem 76:419–446

    Article  CAS  PubMed  Google Scholar 

  50. Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378

    Article  CAS  PubMed  Google Scholar 

  51. Barnaba C, Sahoo BR, Ravula T, Medina-Meza IG, Im SC, Anantharamaiah GM, Waskell L, Ramamoorthy A (2018) Cytochrome-P450-induced ordering of microsomal membranes modulates affinity for drugs. Angew Chem Int Ed Engl 57(13):3391–3395. https://doi.org/10.1002/anie.201713167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Brozik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Taylor, E.L., Poudel, K.R., Brozik, J.A. (2019). A Guide to Tracking Single Membrane Proteins and Their Interactions in Supported Lipid Bilayers. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 2003. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9512-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9512-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9511-0

  • Online ISBN: 978-1-4939-9512-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics