Skip to main content

Design and Synthetic Strategies for Helical Peptides

  • Protocol
  • First Online:
Cyclic Peptide Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2001))

Abstract

Abnormal protein–protein interactions (PPIs) are the basis of multiple diseases, and the large and shallow PPI interfaces make the target “undruggable” for traditional small molecules. Peptides, emerging as a new therapeutic modality, can efficiently mimic PPIs with their large scaffolds. Natural peptides are flexible and usually have poor serum stability and cell permeability, features that limit their further biological applications. To satisfy the clinical application of peptide inhibitors, many strategies have been developed to constrain peptides in their bioactive conformation. In this report, we describe several classic methods used to constrain peptides into a fixed secondary structure which could significantly improve their biophysical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pelay-Gimeno M, Glas A, Koch O, Grossmann TN (2015) Structure-based design of inhibitors of protein–protein interactions: mimicking peptide binding epitopes. Angew Chem Int Ed Engl 54(31):8896–8927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yin H, Hamilton AD (2005) Strategies for targeting protein–protein interactions with synthetic agents. Angew Chem Int Ed Engl 44(27):4130–4163

    Article  CAS  PubMed  Google Scholar 

  3. Tsomaia N (2015) Peptide therapeutics: targeting the undruggable space. Eur J Med Chem 94:459–470

    Article  CAS  PubMed  Google Scholar 

  4. Fujiwara D, Fujii I (2013) Phage selection of peptide “microantibodies”. Curr Protoc Chem Biol 5(3):171–194

    Article  PubMed  Google Scholar 

  5. Hu K, Geng H, Zhang Q, Liu Q, Xie M, Sun C et al (2016) An in-tether chiral center modulates the helicity, cell permeability, and target binding affinity of a peptide. Angew Chem Int Ed Engl 55(28):8013–8017

    Article  CAS  PubMed  Google Scholar 

  6. Walensky LD, Bird GH (2014) Hydrocarbon-stapled peptides: principles, practice, and progress. J Med Chem 57(15):6275–6288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao H, Jiang Y, Tian Y, Yang D, Qin X, Li Z (2017) Improving cell penetration of helical peptides stabilized by N-terminal crosslinked aspartic acids. Org Biomol Chem 15(2):459–464

    Article  CAS  PubMed  Google Scholar 

  8. Lau YH, de Andrade P, Wu Y, Spring DR (2015) Peptide stapling techniques based on different macrocyclisation chemistries. Chem Soc Rev 44(1):91–102

    Article  CAS  PubMed  Google Scholar 

  9. Kashina AS (2015) Protein arginylation: methods and protocols. Humana Press, New York, NY

    Book  Google Scholar 

  10. Kim YW, Grossmann TN, Verdine GL (2011) Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nature Protocols 6(6):761–771

    Article  CAS  PubMed  Google Scholar 

  11. Schafmeister CE, Julia Po A, Verdine GL (2000) An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc 122(24):5891–5892

    Article  CAS  Google Scholar 

  12. Kim YW, Kutchukian PS, Verdine GL (2010) Introduction of all-hydrocarbon i, i + 3 staples into alpha-helices via ring-closing olefin metathesis. Org Lett 12(13):3046–3049

    Article  CAS  PubMed  Google Scholar 

  13. Kim YW, Verdine GL (2009) Stereochemical effects of all-hydrocarbon tethers in i, i + 4 stapled peptides. Bioorg Med Chem Lett 19(9):2533–2536

    Article  CAS  PubMed  Google Scholar 

  14. Shim SY, Kim YW, Verdine GL (2013) A new i, i + 3 peptide stapling system for alpha-helix stabilization. Chem Biol Drug Des 82(6):635–642

    Article  CAS  PubMed  Google Scholar 

  15. Hilinski GJ, Kim YW, Hong J, Kutchukian PS, Crenshaw CM, Verdine GL (2014) Stitched alpha-helical peptides via bis ring-closing metathesis. J Am Chem Soc 136(35):12314–12322

    Article  CAS  PubMed  Google Scholar 

  16. Chapman RN, Gianluca Dimartino A, Arora PS (2004) A highly stable short α-helix constrained by a main-chain hydrogen-bond surrogate. J Am Chem Soc 126(39):12252–12253

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Wang D, Zheng Q, Lu M, Arora PS (2008) Atomic structure of a short alpha-helix stabilized by a main chain hydrogen-bond surrogate. J Am Chem Soc 130(13):4334–4337

    Article  CAS  PubMed  Google Scholar 

  18. Cabezas E, Satterthwait AC (1999) The hydrogen bond mimic approach: solid-phase synthesis of a peptide stabilized as an α-helix with a hydrazone link. J Am Chem Soc 121(16):3862–3875

    Article  CAS  Google Scholar 

  19. Gianluca D, Deyun W, Ross NC, Arora PS (2005) Solid-phase synthesis of hydrogen-bond surrogate-derived α-helices. Org Lett 7(12):2389–2392

    Article  Google Scholar 

  20. Miller SE, Kallenbach NR, Arora PS (2012) Reversible α-helix formation controlled by a hydrogen bond surrogate. Tetrahedron 68(23):4434–4437

    Article  CAS  PubMed  Google Scholar 

  21. Mahon AB, Arora PS (2012) Design, synthesis and protein-targeting properties of thioether-linked hydrogen bond surrogate helices. Chem Commun (Camb) 48(10):1416–1418

    Article  CAS  Google Scholar 

  22. Henchey LK, Porter JR, Ghosh I, Arora PS (2010) High specificity in protein recognition by hydrogen-bond-surrogate alpha-helices: selective inhibition of the p53/MDM2 complex. Chembiochem 11(15):2104–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang D, Liao W, Arora PS (2005) Enhanced metabolic stability and protein-binding properties of artificial alpha helices derived from a hydrogen-bond surrogate: application to Bcl-xL. Angew Chem Int Ed Engl 44(40):6525–6529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang D, Lu M, Arora PS (2008) Inhibition of HIV-1 fusion by hydrogen-bond-surrogate-based alpha helices. Angew Chem Int Ed Engl 47(10):1879–1882

    Article  CAS  PubMed  Google Scholar 

  25. Henchey LK, Kushal S, Dubey R, Chapman RN, Olenyuk BZ, Arora PS (2010) Correction to inhibition of hypoxia inducible factor 1-transcription coactivator interaction by a hydrogen bond surrogate α-helix. J Am Chem Soc 132(3):941–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Patgiri A, Yadav KK, Arora PS, Bar-Sagi D (2011) An orthosteric inhibitor of the Ras–Sos interaction. Nat Chem Biol 7(9):585–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller SE, Watkins AM, Kallenbach NR, Arora PS (2014) Effects of side chains in helix nucleation differ from helix propagation. Proc Natl Acad Sci U S A 111(18):6636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muppidi A, Wang Z, Li X, Chen J, Lin Q (2011) Achieving cell penetration with distance-matching cysteine cross-linkers: a facile route to cell-permeable peptide dual inhibitors of Mdm2/Mdmx. Chem Commun (Camb) 47(33):9396–9398

    Article  CAS  Google Scholar 

  29. Spokoyny AM, Zou Y, Ling JJ, Yu H, Lin YS, Pentelute BL (2013) A perfluoroaryl-cysteine S(N)Ar chemistry approach to unprotected peptide stapling. J Am Chem Soc 135(16):5946–5949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vinogradova EV, Zhang C, Spokoyny AM, Pentelute BL, Buchwald SL (2015) Organometallic palladium reagents for cysteine bioconjugation. Nature 526(7575):687–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Diderich P, Bertoldo D, Dessen P, Khan MM, Pizzitola I, Held W et al (2016) Phage selection of chemically stabilized alpha-helical peptide ligands. ACS Chem Biol 11(5):1422–1427

    Article  CAS  PubMed  Google Scholar 

  32. Dondoni A, Marra A (2012) Recent applications of thiol-ene coupling as a click process for glycoconjugation. Chem Soc Rev 41(2):573–586

    Article  CAS  PubMed  Google Scholar 

  33. Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed Engl 49(9):1540–1573

    Article  CAS  PubMed  Google Scholar 

  34. Dondoni A (2008) The emergence of thiol-ene coupling as a click process for materials and bioorganic chemistry. Angew Chem Int Ed Engl 47(47):8995–8997

    Article  CAS  PubMed  Google Scholar 

  35. Hagberg EC, Malkoch M, Ling Y, Hawker CJ, Carter KR (2007) Effects of modulus and surface chemistry of thiol-ene photopolymers in nanoimprinting. Nano Lett 7(2):233–237

    Article  CAS  PubMed  Google Scholar 

  36. Kato LK, Campos LM, Hawker CJ (2008) Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene “click” chemistry. J Am Chem Soc 130(15):5062–5064

    Article  Google Scholar 

  37. Natarajan LV, Shepherd CK, Brandelik DM, Sutherland RL, Chandra S, Tondiglia, VP(2003) Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization. Chem Mat 15(12):2477–2484

    Article  CAS  Google Scholar 

  38. Campos LM, Meinel I, Guino RG, Schierhorn M, Gupta N, Stucky GD et al (2010) Highly versatile and robust materials for soft imprint lithography based on thiol-ene click chemistry. Adv Mater 20(19):3728–3733

    Article  Google Scholar 

  39. Wang Y, Chou DH (2015) A thiol-ene coupling approach to native peptide stapling and macrocyclization. Angew Chem 127(37):11081–11084

    Article  Google Scholar 

  40. Tian Y, Li J, Zhao H, Zeng X, Wang D, Liu Q et al (2016) Stapling of unprotected helical peptides via photo-induced intramolecular thiol-yne hydrothiolation. Chem Sci 7(5):3325–3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Q, Jiang F, Zhao B, Lin H, Tian Y, Xie M et al (2016) Chiral sulfoxide-induced single turn peptide alpha-helicity. Sci Rep 6:38573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li J, Tian Y, Wang D, Wu Y, Ye X, Li Z (2017) An in-tether sulfoxide chiral center influences the biophysical properties of the N-capped peptides. Bioorg Med Chem 25(6):1756–1761

    Article  CAS  PubMed  Google Scholar 

  43. Lin H, Jiang Y, Zhang Q, Hu K, Li Z (2016) An in-tether sulfilimine chiral center induces helicity in short peptides. Chem Commun (Camb) 52(68):10389–10391

    Article  CAS  Google Scholar 

  44. Shi XD, Zhao RT, Jiang YX, Zhao H, Tian Y, Jiang YH et al (2018) Reversible stapling of unprotected peptides via chemoselective methionine bis-alkylation/dealkylation. Chem Sci 9(12):3227–3232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu K, Sun C, Yang D, Wu Y, Shi C, Chen L et al (2017) A precisely positioned chiral center in an i, i + 7 tether modulates the helicity of the backbone peptide. Chem Comm 53(50):6728–6731

    Article  CAS  PubMed  Google Scholar 

  46. Hu K, Sun C, Yu M, Li W, Lin H, Guo J et al (2017) Dual in-tether chiral centers modulate peptide helicity. Bioconjug Chem 28(5):1537–1543

    Article  CAS  PubMed  Google Scholar 

  47. Hu K, Yin F, Yu M, Sun C, Li J, Liang Y et al (2017) In-tether chiral center induced helical peptide modulators target p53-MDM2/MDMX and inhibit tumor growth in stem-like cancer cell. Theranostics 7(18):4566–4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kolb HC, Finn MG, Sharpless KB (2010) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 32(35):2004–2021

    Google Scholar 

  49. Huisgen R (1961) Proceedings of the Chemical Society. Proc Chem Soc:357–396

    Google Scholar 

  50. Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8(24):1128–1137

    Article  CAS  PubMed  Google Scholar 

  51. Tornã ECW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064

    Article  Google Scholar 

  52. Castro V, Rodriguez H, Albericio F (2016) CuAAC: an efficient click chemistry reaction on solid phase. ACS Comb Sci 18(1):1–14

    Article  CAS  PubMed  Google Scholar 

  53. Madden MM, Muppidi A, Li Z, Li X, Chen J, Lin Q (2011) Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorg Med Chem Lett 21(5):1472–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lau YH, Andrade PD, Quah ST, Rossmann M, Laraia L, Sköld N et al (2014) Functionalised staple linkages for modulating the cellular activity of stapled peptides. Chem Sci 5(5):1804–1809

    Article  CAS  Google Scholar 

  55. Lau YH, de Andrade P, Skold N, McKenzie GJ, Venkitaraman AR, Verma C, Spring DR et al (2014) Investigating peptide sequence variations for ‘double-click’ stapled p53 peptides. Org Biomol Chem 12(24):4074–4077

    Article  CAS  PubMed  Google Scholar 

  56. Lau YH, de Andrade P, McKenzie GJ, Venkitaraman AR, Spring DR (2014) Linear aliphatic dialkynes as alternative linkers for double-click stapling of p53-derived peptides. Chembiochem 15(18):2680–2683

    Article  CAS  PubMed  Google Scholar 

  57. Osapay G, Taylor JW (1990) Multicyclic polypeptide model compounds. 1. Synthesis of a tricyclic amphiphilic alpha-helical peptide using an oxime resin, segment-condensation approach. J Am Chem Soc 112(16):6046–6051

    Article  CAS  Google Scholar 

  58. Shepherd NE, Hoang HN, Abbenante G, Fairlie DP (2005) Single turn peptide alpha helices with exceptional stability in water. J Am Chem Soc 127(9):2974–2983

    Article  CAS  PubMed  Google Scholar 

  59. Zhao H, Liu QS, Geng H, Tian Y, Cheng M, Jiang YH et al (2016) Crosslinked aspartic acids as helix-nucleating templates. Angew Chem Int Ed Engl 55(39):12088–12093

    Article  CAS  PubMed  Google Scholar 

  60. Tian Y, Wang D, Li J, Shi C, Niu X, Li Z et al (2016) A proline-derived transannular N-cap for nucleation of short alpha-helical peptides. Chem Commun (Camb) 52(59):9275–9278

    Article  CAS  Google Scholar 

  61. Zhu G (2012) NMR of proteins and small biomolecules. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  62. Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285:2177–2198

    Article  CAS  PubMed  Google Scholar 

  63. Vinogradova O, Qin J (2012) NMR as a unique tool in assessment and complex determination of weak protein–protein interactions. Top Curr Chem 326(326):35–45

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J et al (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19(2):202–208

    Article  CAS  PubMed  Google Scholar 

  65. Schulze-Gahmen U, Rini JM, Arevalo J, Stura EA, Kenten JH, Wilson IA (1988) Preliminary crystallographic data, primary sequence, and binding data for an anti-peptide fab and its complex with a synthetic peptide from influenza virus hemagglutinin. J Biol Chem 263(32):17100–17105

    CAS  PubMed  Google Scholar 

  66. Brandts JF, Halvorson HR, Brennan M (1975) Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemist 14(22):4953–4963

    Article  CAS  Google Scholar 

  67. Bystrov VF, Arseniev AS, Gavrilov YD (1978) NMR spectroscopy of large peptides and small proteins. J Magn Reson 30(2):151–184

    CAS  Google Scholar 

  68. Wishart DS, Sykes BD, Richards FM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemist 31(6):1647–1651

    Article  CAS  Google Scholar 

  69. Kessler H (2010) Conformation and biological activity of cyclic peptides. Angew Chem Int Ed 21(7):512–523

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zigang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tu, L., Wang, D., Li, Z. (2019). Design and Synthetic Strategies for Helical Peptides. In: Goetz, G. (eds) Cyclic Peptide Design. Methods in Molecular Biology, vol 2001. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9504-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9504-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9503-5

  • Online ISBN: 978-1-4939-9504-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics