Skip to main content

Quantification of Double-Strand Breaks in Mammalian Cells Using Pulsed-Field Gel Electrophoresis

  • Protocol
  • First Online:
DNA Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1999))

Abstract

The double-strand break (DSB) is the most cytotoxic type of DNA damage and measurement of DSBs in cells is essential to understand their induction and repair. Pulsed-field gel electrophoresis (PFGE) allows for quantitative measurement of DSBs in a cell population generated by DNA damaging agents. PFGE has the capacity to separate DNA molecules from several hundred base pairs to over six million base pairs. In the method described here, molecules from five hundred thousand to three million base pairs are consolidated into a single band on the gel that is readily analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett CB, Lewis AL, Baldwin KK et al (1993) Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. Proc Natl Acad Sci U S A 90:5613–5617

    Article  CAS  Google Scholar 

  2. O’Connor MJ (2015) Targeting the DNA damage response in cancer. Mol Cell 60:547–560

    Article  Google Scholar 

  3. van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2:196–206

    Article  Google Scholar 

  4. Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9:338–350

    Article  CAS  Google Scholar 

  5. Ashour ME, Atteya R, El-Khamisy SF (2015) Topoisomerase-mediated chromosomal break repair: an emerging player in many games. Nat Rev Cancer 15:137–151

    Article  CAS  Google Scholar 

  6. Hanada K, Budzowska M, Davies SL et al (2007) The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat Struct Mol Biol 14:1096–1104

    Article  CAS  Google Scholar 

  7. Blocher D (1988) DNA double-strand break repair determines the RBE of alpha-particles. Int J Radiat Biol 54:761–771

    Article  CAS  Google Scholar 

  8. Elia MC, DeLuca JG, Bradley MO (1991) Significance and measurement of DNA double strand breaks in mammalian cells. Pharmacol Ther 51:291–327

    Article  CAS  Google Scholar 

  9. Saleh EM, El-Awady RA, Anis N et al (2012) Induction and repair of DNA double-strand breaks using constant-field gel electrophoresis and apoptosis as predictive markers for sensitivity of cancer cells to cisplatin. Biomed Pharmacother 66:554–562

    Article  CAS  Google Scholar 

  10. Wlodek D, Banath J, Olive PL (1991) Comparison between pulsed-field and constant-field gel electrophoresis for measurement of DNA double-strand breaks in irradiated Chinese hamster ovary cells. Int J Radiat Biol 60:779–790

    Article  CAS  Google Scholar 

  11. Olive PL, Banath JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1:23–29

    Article  CAS  Google Scholar 

  12. Rydberg B (2000) Radiation-induced heat-labile sites that convert into DNA double-strand breaks. Radiat Res 153:805–812

    Article  CAS  Google Scholar 

  13. Bonner WM, Redon CE, Dickey JS et al (2008) GammaH2AX and cancer. Nat Rev Cancer 8:957–967

    Article  CAS  Google Scholar 

  14. Keskin H, Shen Y, Huang F et al (2014) Transcript-RNA-templated DNA recombination and repair. Nature 515:436–439

    Article  CAS  Google Scholar 

  15. Keskin H, Storici F (2018) An approach to detect and study DNA double-strand break repair by transcript RNA using a spliced-antisense RNA template. Methods Enzymol 601:59–70

    Article  CAS  Google Scholar 

  16. Michelini F, Pitchiaya S, Vitelli V et al (2017) Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat Cell Biol 19:1400–1411

    Article  CAS  Google Scholar 

  17. Ouyang KJ, Woo LL, Zhu J et al (2009) SUMO modification regulates BLM and RAD51 interaction at damaged replication forks. PLoS Biol 7:e1000252

    Article  Google Scholar 

  18. Kawashima Y, Yamaguchi N, Teshima R et al (2017) Detection of DNA double-strand breaks by pulsed-field gel electrophoresis. Genes Cells 22:84–93

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan A. Ellis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pond, K.W., Ellis, N.A. (2019). Quantification of Double-Strand Breaks in Mammalian Cells Using Pulsed-Field Gel Electrophoresis. In: Balakrishnan, L., Stewart, J. (eds) DNA Repair. Methods in Molecular Biology, vol 1999. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9500-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9500-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9499-1

  • Online ISBN: 978-1-4939-9500-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics