Skip to main content

In Vitro Assays for DNA Branch Migration

  • Protocol
  • First Online:
DNA Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1999))

  • 1733 Accesses

Abstract

Homologous recombination is a high-fidelity DNA double-strand break repair pathway that uses a homologous template to repair the break. Recombinases are the central enzymes that facilitate the strand invasion step of homologous recombination, which forms a DNA joint molecule. These DNA joint molecules can be moved through branch migration activity. In this chapter, we describe two assays to determine the branch migration activity and directionality of an enzyme. Monitoring the branch migration activity of an enzyme can provide insight into the roles of these factors in homologous recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257

    Article  CAS  Google Scholar 

  2. Bugreev DV, Hanaoka F, Mazin AV (2007) Rad54 dissociates homologous recombination intermediates by branch migration. Nat Struct Mol Biol 14:746–753

    Article  CAS  Google Scholar 

  3. Sugiyama T, Kantake N, Wu Y, Kowalczykowski SC (2006) Rad52-mediated DNA annealing after Rad51-mediated DNA strand exchange promotes second ssDNA capture. EMBO J 25:5539–5548

    Article  CAS  Google Scholar 

  4. Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5:282–304

    Article  Google Scholar 

  5. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wyatt HD, West SC (2014) Holliday junction resolvases. Cold Spring Harb Perspect Biol 6:a023192

    Article  Google Scholar 

  7. Seigneur M, Bidnenko V, Ehrlich SD, Michel B (1998) RuvAB acts at arrested replication forks. Cell 95:419–430

    Article  CAS  Google Scholar 

  8. McGlynn P, Lloyd RG, Marians KJ (2001) Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. Proc Natl Acad Sci U S A 98:8235–8240

    Article  CAS  Google Scholar 

  9. Betous R, Mason AC, Rambo RP, Bansbach CE, Badu-Nkansah A, Sirbu BM, Eichman BF, Cortez D (2012) SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev 26:151–162

    Article  CAS  Google Scholar 

  10. Bugreev DV, Mazina OM, Mazin AV (2006) Rad54 protein promotes branch migration of Holliday junctions. Nature 442:590–593

    Article  CAS  Google Scholar 

  11. Pike AC, Gomathinayagam S, Swuec P, Berti M, Zhang Y, Schnecke C, Marino F, von Delft F, Renault L, Costa A et al (2015) Human RECQ1 helicase-driven DNA unwinding, annealing, and branch migration: insights from DNA complex structures. Proc Natl Acad Sci U S A 112:4286–4291

    Article  CAS  Google Scholar 

  12. Bizard AH, Hickson ID (2014) The dissolution of double Holliday junctions. Cold Spring Harb Perspect Biol 6:a016477

    Article  Google Scholar 

  13. Chi P, Van Komen S, Sehorn MG, Sigurdsson S, Sung P (2006) Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function. DNA Repair 5:381–391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Sehorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kelso, A.A., Goodson, S.D., Sehorn, M.G. (2019). In Vitro Assays for DNA Branch Migration. In: Balakrishnan, L., Stewart, J. (eds) DNA Repair. Methods in Molecular Biology, vol 1999. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9500-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9500-4_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9499-1

  • Online ISBN: 978-1-4939-9500-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics