Skip to main content

Isolation of Naturally Released Gonococcal Outer Membrane Vesicles as Vaccine Antigens

  • Protocol
  • First Online:
Neisseria gonorrhoeae

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1997))

Abstract

The emergence and spread of fully antimicrobial resistant Neisseria gonorrhoeae (GC) highlights a clear need for next-generation antigonococcal therapeutics. A broadly reactive anti-GC vaccine would best address this global public health threat. Polyantigenic outer membrane vesicles (OMVs) derived from GC can overcome the challenges posed by GC’s high rate of phase and antigen variation. In fact, GC OMVs have already shown promise as a vaccine antigen; however, all previous studies have utilized vesicles contaminated by RMP, a bacterioprotective antigen known to entirely abrogate vaccine-induced bactericidal activity in vivo. Additionally, these studies primarily utilized vesicles isolated through techniques like membrane disruption with detergents, which are known to increase contamination of cytoplasmic components as compared to naturally released OMVs (nOMVs). This chapter describes the isolation and characterization of naturally released nOMVs through sequential size and weight restrictive filtration. nOMVs are characterized by morphology, proteomics, and bioactivity via various methods. Herein we also describe methods for further evaluation of the innate and induced immunogenicity of rmp-deficient GC nOMVs by cell stimulation and murine vaccination. Per these methods, nOMVs are found to be largely homogenous spherical structures approximately 70 nm in diameter containing a consistent subset of GC outer membrane proteins. The rmp-deficient vesicles demonstrate a morphology and, with the exception of RMP, antigenic profile consistent with that of nOMVs derived from wild time N. gonorrhoeae. Additionally, vesicles lacking RMP are able to engage and strongly activate a diverse array of pattern recognition receptors in vitro. These methods lay the groundwork for future experiments examining the in vivo protective efficacy of the anti-GC response induced by these nOMVs as well as studies examining the mechanism of vaccine induced female genital tract immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bos MP, Robert V, Tommassen J (2007) Biogenesis of the gram-negative bacterial outer membrane. Annu Rev Microbiol 61:191–214. https://doi.org/10.1146/annurev.micro.61.080706.093245

    Article  CAS  PubMed  Google Scholar 

  2. Dorward DJ, Judd RC (1988) The isolation and partial characterization of naturally-evolved outer membrane blebs of Neisseria gonorrhoeae. In: Poolman JZ, Meyer TF, Heckels JE, PRH M, Smith H, Beuvery EC (eds) Gonococci and meningococci. Kluwer Academic Publishers, Dordrecht, pp 349–356

    Chapter  Google Scholar 

  3. Chatterjee SN, Das J (1967) Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J Gen Microbiol 49(1):1–11. https://doi.org/10.1099/00221287-49-1-1

    Article  CAS  PubMed  Google Scholar 

  4. Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184. https://doi.org/10.1146/annurev.micro.091208.073413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vanaja SK, Russo AJ, Behl B et al (2016) Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 165(5):1106–1119. https://doi.org/10.1016/j.cell.2016.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pettit RK, Judd RC (1992) The interaction of naturally elaborated blebs from serum-susceptible and serum-resistant strains of Neisseria gonorrhoeae with normal human serum. Mol Microbiol 6(6):729–734

    Article  CAS  PubMed  Google Scholar 

  7. Kaparakis M, Turnbull L, Carneiro L et al (2010) Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell Microbiol 12(3):372–385. https://doi.org/10.1111/j.1462-5822.2009.01404.x

    Article  CAS  PubMed  Google Scholar 

  8. Lindmark B, Rompikuntal PK, Vaitkevicius K et al (2009) Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni. BMC Microbiol 9:220. https://doi.org/10.1186/1471-2180-9-220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koeppen K, Hampton TH, Jarek M et al (2016) A novel mechanism of host-pathogen interaction through sRNA in bacterial outer membrane vesicles. PLoS Pathog 12(6):e1005672. https://doi.org/10.1371/journal.ppat.1005672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zielke RA, Wierzbicki IH, Weber JV et al (2014) Quantitative proteomics of the Neisseria gonorrhoeae cell envelope and membrane vesicles for the discovery of potential therapeutic targets. Mol Cell Proteomics 13(5):1299–1317. https://doi.org/10.1074/mcp.M113.029538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Olofsson A, Vallstrom A, Petzold K et al (2010) Biochemical and functional characterization of Helicobacter pylori vesicles. Mol Microbiol 77(6):1539–1555. https://doi.org/10.1111/j.1365-2958.2010.07307.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McMahon KJ, Castelli ME, Garcia Vescovi E et al (2012) Biogenesis of outer membrane vesicles in Serratia marcescens is thermoregulated and can be induced by activation of the Rcs phosphorelay system. J Bacteriol 194(12):3241–3249. https://doi.org/10.1128/JB.00016-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yanez-Mo M, Siljander PR, Andreu Z et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066. https://doi.org/10.3402/jev.v4.27066

    Article  PubMed  Google Scholar 

  14. Claassen I, Meylis J, van der Ley P et al (1996) Production, characterization and control of a Neisseria meningitidis hexavalent class 1 outer membrane protein containing vesicle vaccine. Vaccine 14:1001–1008

    Article  CAS  PubMed  Google Scholar 

  15. Zhu W, Thomas CE, Chen CJ et al (2005) Comparison of immune responses to gonococcal PorB delivered as outer membrane vesicles, recombinant protein, or Venezuelan equine encephalitis virus replicon particles. Infect Immun 73(11):7558–7568. https://doi.org/10.1128/iai.73.11.7558-7568.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Keiser PB, Biggs-Cicatelli S, Moran EE et al (2011) A phase 1 study of a meningococcal native outer membrane vesicle vaccine made from a group B strain with deleted lpxL1 and synX, over-expressed factor H binding protein, two PorAs and stabilized OpcA expression. Vaccine 29(7):1413–1420. https://doi.org/10.1016/j.vaccine.2010.12.039

    Article  CAS  PubMed  Google Scholar 

  17. Post DM, Zhang D, Eastvold JS et al (2005) Biochemical and functional characterization of membrane blebs purified from Neisseria meningitidis serogroup B. J Biol Chem 280(46):38383–38394. https://doi.org/10.1074/jbc.M508063200. M508063200 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. van de Waterbeemd B, Mommen GP, Pennings JL et al (2013) Quantitative proteomics reveals distinct differences in the protein content of outer membrane vesicle vaccines. J Prot Res 12(4):1898–1908

    Article  Google Scholar 

  19. Lappann M, Otto A, Becher D et al (2013) Comparative proteome analysis of spontaneous outer membrane vesicles and purified outer membranes of Neisseria meningitidis. J Bact 195(19):4425–4435. https://doi.org/10.1128/jb.00625-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van de Waterbeemd B, Streefland M, van der Ley P et al (2010) Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process. Vaccine 28(30):4810–4816. https://doi.org/10.1016/j.vaccine.2010.04.082

    Article  CAS  PubMed  Google Scholar 

  21. van der Pol L, Stork M, van der Ley P (2015) Outer membrane vesicles as platform vaccine technology. Biotechnol J 10(11):1689–1706. https://doi.org/10.1002/biot.201400395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chow JC, Young DW, Golenbock DT et al (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274(16):10689–10692

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank the lab of Dr. Esther Bullitt and Donald Gantz for their help with electron microscopy. Thank you to Neelou Etesami for her help with editing. Thank you to the NIH/NIAID for the funding to support this work (2R01AI103400-05 awarded to L.M.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee M. Wetzler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Francis, I.P., Lui, X., Wetzler, L.M. (2019). Isolation of Naturally Released Gonococcal Outer Membrane Vesicles as Vaccine Antigens. In: Christodoulides, M. (eds) Neisseria gonorrhoeae. Methods in Molecular Biology, vol 1997. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9496-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9496-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9495-3

  • Online ISBN: 978-1-4939-9496-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics