Skip to main content

Genetic and Biochemical Analyses of Yeast ESCRT

  • Protocol
  • First Online:
Book cover The ESCRT Complexes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1998))

Abstract

Budding yeast Saccharomyces cerevisiae is an ideal model organism to study membrane trafficking pathways. The ESCRT (endosomal sorting complexes required for transport) pathway was first identified in this organism. Upon recognition of endocytosed ubiquitinated membrane proteins at endosomes, ESCRTs assemble at these organelles to catalyze the biogenesis of multivesicular bodies (MVBs). Formation of MVBs leads to the trafficking of these membrane proteins to vacuoles for degradation. Here, we describe genetic and biochemical approaches to study ESCRT function. We outline in vivo endocytosis assays using two model cargoes in Saccharomyces cerevisiae and also describe an in vitro approach to analyze ESCRT-III polymerization on lipid monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21:77–91

    Article  CAS  Google Scholar 

  2. Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H (2017) Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Cell Biol 27:1–11

    Article  Google Scholar 

  3. Schöneberg J, Lee IH, Iwasa JH, Hurley JH (2017) Reverse-topology membrane scission by the ESCRT proteins. Nat Rev Mol Cell Biol 18:5–17

    Article  Google Scholar 

  4. Menant A, Barbey R, Thomas D (2006) Substrate-mediated remodeling of methionine transport by multiple ubiquitin-dependent mechanisms in yeast cells. EMBO J 25:4436–4447

    Article  CAS  Google Scholar 

  5. Guiney EL, Klecker T, Emr SD (2016) Identification of the endocytic sorting signal recognized by the Art1-Rsp5 ubiquitin ligase complex. Mol Biol Cell 15:4043–4054

    Article  Google Scholar 

  6. Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  Google Scholar 

  7. Lin CH, MacGurn JA, Chu T, Stefan CJ, Emr SD (2008) Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135:714–725

    Article  CAS  Google Scholar 

  8. Tang S, Henne WM, Borbat PP, Buchkovich NJ, Freed JH, Mao Y, Fromme JC, Emr SD (2015) Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. elife:e12548

    Google Scholar 

  9. Henne WM, Buchkovich NJ, Zhao Y, Emr SD (2012) The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell 151(2):356–371

    Article  CAS  Google Scholar 

  10. Tang S, Buchkovich NJ, Henne WM, Banjade S, Kim YJ, Emr SD (2016) ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis. elife 5:E15507

    Article  Google Scholar 

  11. Chiaruttini N, Redondo-Morata L, Colom A, Humbert F, Lenz M, Scheuring S, Roux A (2015) Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163:866–879

    Article  CAS  Google Scholar 

  12. MacDonald C, Payne JA, Aboian M, Smith W, Katzmann DJ, Piper RC (2015) A family of tetraspans organizes cargo for sorting into multivesicular bodies. Dev Cell 33:328–342

    Article  CAS  Google Scholar 

  13. Prosser DC, Whitworth K, Wendland B (2010) Quantitative analysis of endocytosis with cytoplasmic pHluorin chimeras. Traffic 11:1141–1150

    Article  CAS  Google Scholar 

  14. Teis D, Saksena S, Judson BL, Emr SD (2010) ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. EMBO J 29:871–883

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in the Emr lab is supported by a Cornell University Research Grant CU3704. Sudeep Banjade is a HHMI fellow of the Damon Runyon Cancer Research Foundation (DRG-2273-16). Shaogeng Tang is a Merck fellow of the Damon Runyon Cancer Research Foundation (DRG-2301-17). We thank all members of the Emr lab for building these protocols in the lab over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott D. Emr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Banjade, S., Tang, S., Emr, S.D. (2019). Genetic and Biochemical Analyses of Yeast ESCRT. In: Culetto, E., Legouis, R. (eds) The ESCRT Complexes. Methods in Molecular Biology, vol 1998. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9492-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9492-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9491-5

  • Online ISBN: 978-1-4939-9492-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics