Metabolomics pp 259-272 | Cite as

Application of Stable Isotope Labels for Metabolomics in Studies in Fatty Liver Disease

  • Patrycja Puchalska
  • Peter A. CrawfordEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1996)


The progression of nonalcoholic fatty liver disease (NAFLD) increases the risks of cirrhosis and cardiovascular disease. Marked alteration of both cytosolic and mitochondrial metabolism, and in combination with insulin resistance, increases hepatic glucose production. Utilization of stable isotope tracers to study liver metabolism offers deep insight into rearrangements of metabolic pathways and substrate-product relationships under the conditions leading to fatty liver and induced by diseases, drugs, toxins, or genetic manipulations. Isotope tracing untargeted metabolomics (ITUM) recently emerged as a powerful platform in which the label can be tracked in an untargeted fashion, revealing the penetration of substrates into metabolic pathways, even at low abundance. Here, we describe a protocol that can be utilized to study the changes in utilization of any labeled substrate toward a wide range of metabolites either in isolated liver cells or whole liver tissue under conditions mimicking various stages of fatty liver disease. Furthermore, a routine protocol for extraction, separation, and mass spectrometric detection of isotopically labeled metabolites in an untargeted or targeted fashion. An informatic approach to analyze stable isotope untargeted metabolomic datasets is also described.

Key words

Stable isotopes Isotope tracking untargeted metabolomics Untargeted metabolomics Fatty liver disease Mass spectrometry 



The authors thank Xiaojing Huang and D. André d’Avignon for numerous helpful discussions. PAC is supported in part by NIH DK091538.


  1. 1.
    Trefts E, Gannon M, Wasserman DH (2017) The liver. Curr Biol 27(21):R1147–R1151CrossRefGoogle Scholar
  2. 2.
    Brunt EM (2017) Nonalcoholic fatty liver disease and the ongoing role of liver biopsy evaluation. Hepatol Commun 1(5):370–378CrossRefGoogle Scholar
  3. 3.
    Tilg H, Moschen AR, Roden M (2017) NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol 14(1):32–42CrossRefGoogle Scholar
  4. 4.
    Fabbrini E, Magkos F, Mohammed BS, Pietka T, Abumrad NA, Patterson BW et al (2009) Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A 106(36):15430–15435CrossRefGoogle Scholar
  5. 5.
    Masuoka HC, Chalasani N (2013) Nonalcoholic fatty liver disease: an emerging threat to obese and diabetic individuals. Ann N Y Acad Sci 1281:106–122CrossRefGoogle Scholar
  6. 6.
    Targher G, Byrne CD (2013) Clinical review: nonalcoholic fatty liver disease: a novel cardiometabolic risk factor for type 2 diabetes and its complications. J Clin Endocrinol Metab 98(2):483–495CrossRefGoogle Scholar
  7. 7.
    Puchalska P, Martin S, Huang X, Lengfeld J, Graham M, Daniel B et al (2018) Hepatocyte-macrophage acetoacetate shuttle protects against tissue fibrosis. Cell Metab 29(2):383–398.e7. submittedCrossRefGoogle Scholar
  8. 8.
    Weindl D, Cordes T, Battello N, Sapcariu SC, Dong X, Wegner A et al (2016) Bridging the gap between non-targeted stable isotope labeling and metabolic flux analysis. Cancer Metab 4(10):016–0150-z. eCollection 2016Google Scholar
  9. 9.
    Weindl D, Wegner A, Hiller K (2015) Metabolome-wide analysis of stable isotope labeling-is it worth the effort? Front Physiol 6:344CrossRefGoogle Scholar
  10. 10.
    Zamboni N, Saghatelian A, Patti GJ (2015) Defining the metabolome: size, flux, and regulation. Mol Cell 58(4):699–706CrossRefGoogle Scholar
  11. 11.
    Jang C, Chen L, Rabinowitz JD (2018) Metabolomics and isotope tracing. Cell 173(4):822–837CrossRefGoogle Scholar
  12. 12.
    Huang X, Chen YJ, Cho K, Nikolskiy I, Crawford PA, Patti GJ (2014) X13CMS: global tracking of isotopic labels in untargeted metabolomics. Anal Chem 86(3):1632–1639CrossRefGoogle Scholar
  13. 13.
    Capellades J, Navarro M, Samino S, Garcia-Ramirez M, Hernandez C, Simo R et al (2016) geoRge: a computational tool to detect the presence of stable isotope labeling in LC/MS-based untargeted metabolomics. Anal Chem 88(1):621–628CrossRefGoogle Scholar
  14. 14.
    Chokkathukalam A, Jankevics A, Creek DJ, Achcar F, Barrett MP, Breitling R (2013) mzMatch-ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics 29(2):281–283CrossRefGoogle Scholar
  15. 15.
    Bueschl C, Kluger B, Neumann NKN, Doppler M, Maschietto V, Thallinger GG et al (2017) MetExtract II: a software suite for stable isotope-assisted untargeted metabolomics. Anal Chem 89(17):9518–9526CrossRefGoogle Scholar
  16. 16.
    Cotter DG, Ercal B, Huang X, Leid JM, d'Avignon DA, Graham MJ et al (2014) Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J Clin Invest 124(12):5175–5190CrossRefGoogle Scholar
  17. 17.
    d'Avignon DA, Puchalska P, Ercal B, Chang Y, Martin SE, Graham MJ et al (2018) Hepatic ketogenic insufficiency reprograms hepatic glycogen metabolism and the lipidome. JCI Insight 3(12):e99762CrossRefGoogle Scholar
  18. 18.
    Puchalska P, Huang X, Martin S, Han X, Patti G, Crawford P (2018) Isotope tracing untargeted metabolomics (ITUM) reveals macrophage polarization state-specific metabolic coordination across intracellular compartments. iScience 9:298–313. submittedCrossRefGoogle Scholar
  19. 19.
    Grankvist N, Watrous JD, Lagerborg KA, Lyutvinskiy Y, Jain M, Nilsson R (2018) Profiling the metabolism of human cells by deep (13)C labeling. Cell Chem Biol 25(11):1419–1427.e4CrossRefGoogle Scholar
  20. 20.
    Chen YJ, Mahieu NG, Huang X, Singh M, Crawford PA, Johnson SL et al (2016) Lactate metabolism is associated with mammalian mitochondria. Nat Chem Biol 12(11):937–943CrossRefGoogle Scholar
  21. 21.
    Ivanisevic J, Zhu ZJ, Plate L, Tautenhahn R, Chen S, O'Brien PJ et al (2013) Toward 'omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism. Anal Chem 85(14):6876–6884CrossRefGoogle Scholar
  22. 22.
    Spalding JL, Naser FJ, Mahieu NG, Johnson SL, Patti GJ (2018) Trace phosphate improves ZIC-pHILIC peak shape, sensitivity, and coverage for untargeted metabolomics. J Proteome Res 17(10):3537–3546CrossRefGoogle Scholar
  23. 23.
    Contrepois K, Jiang L, Snyder M (2015) Optimized analytical procedures for the untargeted metabolomic profiling of human urine and plasma by combining hydrophilic interaction (HILIC) and reverse-phase liquid chromatography (RPLC)-mass spectrometry. Mol Cell Proteomics 14(6):1684–1695CrossRefGoogle Scholar
  24. 24.
    Tautenhahn R, Bottcher C, Neumann S (2008) Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9(504):2105–9-504Google Scholar
  25. 25.
    Mahieu NG, Spalding JL, Patti GJ (2016) Warpgroup: increased precision of metabolomic data processing by consensus integration bound analysis. Bioinformatics 32(2):268–275PubMedGoogle Scholar
  26. 26.
    Libiseller G, Dvorzak M, Kleb U, Gander E, Eisenberg T, Madeo F et al (2015) IPO: a tool for automated optimization of XCMS parameters. BMC Bioinformatics 16(118):015–0562-8Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Molecular Medicine, Department of MedicineUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations