Skip to main content
Book cover

Metabolomics pp 199–206Cite as

Detection and Quantification of Lipid Droplets in Differentiated Human Podocytes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1996))

Abstract

Lipid droplets (LDs) are dynamic organelles that regulate the storage and homeostasis of intracellular triglycerides and other neutral lipids. Studies show that the number, morphology, and subcellular localization of LDs are altered in a growing number of diseases. As such, methodologies for imaging and quantifying LDs have become essential tools for detecting changes in cellular lipid metabolism, which could be an important indicator of disease onset or progression. We previously reported on the accumulation of LDs in podocytes of the kidney glomerulus in nephrological diseases of metabolic and non-metabolic origin. Here, we describe a high-content analysis (HCA) method for automated detection and quantification of LDs in differentiated human podocytes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Murphy DJ (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249:541–585

    Article  CAS  Google Scholar 

  2. Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RG (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 279:3787–3792

    Article  CAS  Google Scholar 

  3. Saka HA, Valdivia R (2012) Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu Rev Cell Dev Biol 28:411–437

    Article  CAS  Google Scholar 

  4. Welte MA (2015) Expanding roles for lipid droplets. Curr Biol 25:R470–R481

    Article  CAS  Google Scholar 

  5. Bozza PT, Bakker-Abreu I, Navarro-Xavier RA, Bandeira-Melo C (2011) Lipid body function in eicosanoid synthesis: an update. Prostaglandins Leukot Essent Fatty Acids 85:205–213

    Article  CAS  Google Scholar 

  6. Thiam AR, Antonny B, Wang J et al (2013) COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function. Proc Natl Acad Sci U S A 110:13244–13249

    Article  CAS  Google Scholar 

  7. Outeiro TF, Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302:1772–1775

    Article  CAS  Google Scholar 

  8. Li Z, Johnson MR, Ke Z, Chen L, Welte MA (2014) Drosophila lipid droplets buffer the H2Av supply to protect early embryonic development. Curr Biol 24:1485–1491

    Article  CAS  Google Scholar 

  9. Li Z, Thiel K, Thul PJ, Beller M, Kuhnlein RP, Welte MA (2012) Lipid droplets control the maternal histone supply of drosophila embryos. Curr Biol 22:2104–2113

    Article  Google Scholar 

  10. Birch AM, Buckett LK, Turnbull AV (2010) DGAT1 inhibitors as anti-obesity and anti-diabetic agents. Curr Opin Drug Discov Devel 13:489–496

    CAS  PubMed  Google Scholar 

  11. Greenberg AS, Coleman RA, Kraemer FB et al (2011) The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest 121:2102–2110

    Article  CAS  Google Scholar 

  12. Gan L, Xiang W, Xie B, Yu L (2015) Molecular mechanisms of fatty liver in obesity. Front Med 9:275–287

    Article  Google Scholar 

  13. Olofsson SO, Boström P, Andersson L et al (2009) Lipid droplets and their role in the development of insulin resistance and diabetic dyslipidemia. Clin Lipidol 4:611–622

    Article  CAS  Google Scholar 

  14. Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U (2014) Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res 55:561–572

    Article  CAS  Google Scholar 

  15. Proctor G, Jiang T, Iwahashi M, Wang Z, Li J, Levi M (2006) Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes 55:2502–2509

    Article  CAS  Google Scholar 

  16. Merscher-Gomez S, Guzman J, Pedigo CE et al (2013) Cyclodextrin protects podocytes in diabetic kidney disease. Diabetes 62:3817–3827

    Article  CAS  Google Scholar 

  17. Mitrofanova A, Molina J, Varona Santos J et al. (2018) Hydroxypropyl-β-cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis. Kidney Int 94(6):1151–1159

    Article  CAS  Google Scholar 

  18. Pedigo CE, Ducasa GM, Leclercq F et al (2016) Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J Clin Invest 126:3336–3350

    Article  Google Scholar 

  19. Ni L, Saleem M, Mathieson PW (2012) Podocyte culture: tricks of the trade. Nephrology (Carlton) 17:525–531

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alessia Fornoni or Hassan Al-Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mallela, S.K., Patel, D.M., Ducasa, G.M., Merscher, S., Fornoni, A., Al-Ali, H. (2019). Detection and Quantification of Lipid Droplets in Differentiated Human Podocytes. In: Bhattacharya, S. (eds) Metabolomics. Methods in Molecular Biology, vol 1996. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9488-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9488-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9487-8

  • Online ISBN: 978-1-4939-9488-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics