Quantification of Lipid Content in Oleaginous Biomass Using Thermogravimetry

  • Balakrishna Maddi
  • Agasteswar Vadlamani
  • Sridhar ViamajalaEmail author
  • Sasidhar Varanasi
Part of the Methods in Molecular Biology book series (MIMB, volume 1995)


Laboratory analytical techniques employed for triglyceride quantification in oleaginous biomass (e.g., microalgae and oilseeds) involve multiple steps and typically require use of volatile organic solvents. Here we describe a single-step approach for measurement of triglycerides using thermogravimetry (TG). We have observed that triglycerides undergo complete volatilization over a narrow temperature interval of 370–450 °C, with negligible solid residue under inert atmosphere, whereas other constituents of oleaginous biomass (such as proteins and carbohydrates) primarily degrade below 350 °C. As a result, triglyceride content of biomass can be estimated using TG by determining the mass loss of the sample in the temperature interval of 370–450 °C.

Key words

Microalgae Thermogravimetry Lipids Triglycerides Oleaginous biomass 



This work was supported by (1) the US Department of Energy Bioenergy Technologies Office (award# DE-EE0005993) and (2) the National Science Foundation through the Sustainable Energy Pathways Program (award# CHE-1230609)


  1. 1.
    Vadlamani A, Viamajala S, Pendyala B, Varanasi S (2017) Cultivation of microalgae at extreme alkaline pH conditions–a novel approach for biofuel production. ACS Sust Chem Eng 5(8):7284–7294CrossRefGoogle Scholar
  2. 2.
    Sanchez DL, Nelson JH, Johnston J, Mileva A, Kammen DM (2015) Biomass enables the transition to a carbon-negative power system across western North America. Nat Clim Chang 5(3):230–234CrossRefGoogle Scholar
  3. 3.
    DOE, U.S. Department Of Energy (2016) National algal biofuels technology review. U.S. Department Of Energy, O.O.E.E.A.R.E., Bioenergy Technologies Office, Washington, D.C.Google Scholar
  4. 4.
    Amaro HM, Guedes AC, Malcata FX (2011) Advances perspectives in using microalgae to produce biodiesel. Appl Energy 88(10):3402–3410CrossRefGoogle Scholar
  5. 5.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917CrossRefGoogle Scholar
  6. 6.
    Kumari P, Reddy CRK, Jha B (2011) Comparative evaluation and selection of a method for lipid and fatty acid extraction from macroalgae. Anal Biochem 415(2):134–144CrossRefGoogle Scholar
  7. 7.
    Lee S, Yoon B-D, Oh H-M (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12(7):553–556CrossRefGoogle Scholar
  8. 8.
    Mercer P, Armenta RE (2011) Developments in oil extraction from microalgae. Eur J Lipid Sci Technol 113(5):539–547CrossRefGoogle Scholar
  9. 9.
    Laurens LM, Quinn M, Van Wychen S, Templeton DW, Wolfrum EJ (2012) Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification. Anal Bioanal Chem 403(1):167–178CrossRefGoogle Scholar
  10. 10.
    Lohman EJ, Gardner RD, Halverson L, Macur RE, Peyton BM, Gerlach R (2013) An efficient and scalable extraction and quantification method for algal derived biofuel. J Microbiol Methods 94(3):159–396CrossRefGoogle Scholar
  11. 11.
    Retief L (2018) Analysis of vegetable oils, seeds and beans by TGA and NMR spectroscopy. Department of chemistry and polymer science. University Of Stellenbosch, Stellenbosch, South Africa, p 196Google Scholar
  12. 12.
    Nelson DR, Viamajala S (2016) One-pot synthesis and recovery of fatty acid methyl esters (fames) from microalgae biomass. Catal Today 269:29–39CrossRefGoogle Scholar
  13. 13.
    Elder JP (1983) Proximate analysis by automated thermogravimetry. Fuel 62(5):580–584CrossRefGoogle Scholar
  14. 14.
    Kök M (2008) Recent developments in the application of thermal analysis techniques in fossil fuels. J Therm Anal Calorim 91(3):763–773CrossRefGoogle Scholar
  15. 15.
    Maddi B, Viamajala S, Varanasi S (2011) Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresour Technol 102(23):11018–11026CrossRefGoogle Scholar
  16. 16.
    Petrakis L, Grandy DW (1980) Coal analysis, characterization and petrography. J Chem Educ 57(10):689–694CrossRefGoogle Scholar
  17. 17.
    Canetti M, Bertini F, Chirico AE, Audisio G (2006) Thermal degradation behaviour of isotactic polypropylene blended with lignin. Polym Degrad Stab 91(3):494–498CrossRefGoogle Scholar
  18. 18.
    Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788CrossRefGoogle Scholar
  19. 19.
    Yang H, Yan R, Chen H, Zheng C, Lee DH, Liag DT (2006) In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuel 20:388–393CrossRefGoogle Scholar
  20. 20.
    Du Z, Li Y, Wang X, Wan Y, Chen Q, Wang C, Lin X, Liu Y, Chen P, Ruan R (2011) Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour Technol 102(7):4890–4896CrossRefGoogle Scholar
  21. 21.
    Laresgoiti MF, Caballero BM, de Marco I, Torres A, Cabrero M, Chomón MJ (2004) Characterization of the liquid products obtained in Tyre pyrolysis. J Anal Appl Pyrolysis 71(2):917–934CrossRefGoogle Scholar
  22. 22.
    Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Pol Sci Part C Pol Symp 6(1):183–195CrossRefGoogle Scholar
  23. 23.
    Harlick PJE, Sayari A (2006) Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Ind Eng Chem Res 45(9):3248–3255CrossRefGoogle Scholar
  24. 24.
    Damartzis T, Vamvukab D, Sfakiotakis S, Zabaniotou A (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol 102(10):6230–6238CrossRefGoogle Scholar
  25. 25.
    Doyle CD (1961) Kinetic analysis of thermogravimetric data. J Appl Pol Sci 5(15):285–292CrossRefGoogle Scholar
  26. 26.
    Kok MV, Pamir MR (1995) Pyrolysis and combustion studies of fossil fuels by thermal analysis methods. J Anal Appl Pyrolysis 35(2):145–156CrossRefGoogle Scholar
  27. 27.
    Murugan P, Mahinpey N, Johnson KE, Wilson M (2008) Kinetics of the pyrolysis of lignin using thermogravimetric and differential scanning calorimetry methods. Energy Fuel 22(4):2720–2724CrossRefGoogle Scholar
  28. 28.
    Maddi B, Vadlamani A, Vaimajala S, Varanasi S (2017) Quantification of triglyceride content in oleaginous materials using thermo-gravimetry. J Anal Appl Pyrolysis 128:232–237CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Balakrishna Maddi
    • 1
  • Agasteswar Vadlamani
    • 2
  • Sridhar Viamajala
    • 2
    Email author
  • Sasidhar Varanasi
    • 2
  1. 1.Suganit Bio-Renewables LLCToledoUSA
  2. 2.Department of Chemical EngineeringThe University of ToledoToledoUSA

Personalised recommendations