Advertisement

Rhodococcus and Yarrowia-Based Lipid Production Using Lignin-Containing Industrial Residues

  • Rosemary K. Le
  • Kristina M. Mahan
  • Arthur J. RagauskasEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1995)

Abstract

Improvement in biorefining technologies coupled with development of novel fermentation strategies and analysis will be paramount in establishing supplementary and sustainable biofuel pathways. Oleaginous microorganisms that are capable of accumulating triacylglycerides (TAGs) and fatty acid methyl esters (FAMEs), such as Rhodococcus and Yarrowia species, can be used to produce second-generation biofuels from non-food competing carbon sources. These “microbiorefineries” provide a pathway to upgrade agricultural and industrial waste streams to fungible fuels or precursors to chemicals and materials. Here we provide a general overview on cultivating Rhodococcus and Yarrowia on agro-waste/industrial biomass pretreatment waste streams to produce single-cell oils/lipids and preparing samples for FAME detection.

Key words

Yeast Rhodococcus Yarrowia Fermentation Agro-waste Lipid production 

Notes

Acknowledgments

This work was supported by US Department of Energy (award #DE—EE0006112), and we would like to acknowledge our collaborator Joshua S. Yuan at Texas A&M University.

References

  1. 1.
    Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846CrossRefGoogle Scholar
  2. 2.
    Deeba FV, Pruthi V, Negi YS (2016) Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production. Bioresour Technol 213:96–102CrossRefGoogle Scholar
  3. 3.
    Lamers D, van Biezen N, Martens D, Peters L, Van de Zilver E, Jacobs-van Druemel N, Wijffels RH, Lokman C (2016) Selection of oleaginous yeasts for fatty acid production. BMC Biotechnol 16(1):45CrossRefGoogle Scholar
  4. 4.
    Abghari A, Chen S (2014) Yarrowia lipolytica as an oleaginous cell factory platform for production of fatty acid-based biofuel and bioproducts. Front Energy Res 2(21).  https://doi.org/10.3389/fenrg.2014.00021
  5. 5.
    Ledesma-Amaro R, Nicaud J-M (2016) Metabolic engineering for expanding the substrate range of Yarrowia lipolytica. Trends Biotechnol 34(10):798–809CrossRefGoogle Scholar
  6. 6.
    Beopoulos A, Cescut J, Haddouche R, Uribelarrea J-J, Molina-Jouve C, Nicaud J-M (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48(6):375–387CrossRefGoogle Scholar
  7. 7.
    Beopoulos A, Nicaud JM, Gailardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90(4):1193–1206CrossRefGoogle Scholar
  8. 8.
    Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29(2):53–61CrossRefGoogle Scholar
  9. 9.
    Kosa M, Ragauskas AJ (2012) Bioconversion of lignin model compounds with oleaginous rhodococci. Appl Microbiol Biotechnol 93(2):891–900CrossRefGoogle Scholar
  10. 10.
    Kosa M, Ragauskas AJ (2013) Lignin to lipid bioconversion by oleaginous rhodococci. Green Chem 15(8):2070–2074CrossRefGoogle Scholar
  11. 11.
    Wei Z, Zeng G, Huang F, Kosa M, Huang D, Ragauskas AJ (2015) Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chem 17(5):2784–2789CrossRefGoogle Scholar
  12. 12.
    Wei Z, Zeng G, Huang F, Kosa M, Sun Q, Meng X, Huang D, Ragauskas AJ (2015) Microbial lipid production by oleaginous rhodococci cultured in lignocellulosic autohydrolysates. Appl Microbiol Biotechnol 99(17):7369–7377CrossRefGoogle Scholar
  13. 13.
    Wei Z, Zeng G, Kosa M, Huang D, Ragauskas AJ (2015) Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus. Appl Biochem Biotechnol 175(2):1234–1246CrossRefGoogle Scholar
  14. 14.
    Le RK, Wells T, Das P, Meng X, Stoklosa RJ, Bhalla A, Hodge DB, Yuan JS, Tagauskas AJ (2017) Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via rhodococci. RSC Adv 7(7):4108–4115CrossRefGoogle Scholar
  15. 15.
    Alvarez H, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60(4):367–376CrossRefGoogle Scholar
  16. 16.
    Alvarez HM, Kalscheuer R, Steinbüchel A (1997) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Eur J Lip Sci Technol 99(7):239–246Google Scholar
  17. 17.
    Gomez JA, Höffner K, Barton PI (2016) From sugars to biodiesel using microalgae and yeast. Green Chem 18(2):461–475CrossRefGoogle Scholar
  18. 18.
    Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5CrossRefGoogle Scholar
  19. 19.
    Pimentel D, Patzek PW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 14(1):65–76CrossRefGoogle Scholar
  20. 20.
    Beckham GT, Johnson CW, Karp EM, Salvachua D, Vardon DR (2016) Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol 42:40–53CrossRefGoogle Scholar
  21. 21.
    Alvarez HM, Kalscheuer R, Steinbuchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223CrossRefGoogle Scholar
  22. 22.
    Wells T, Ragauskas AJ (2012) Biotechnological opportunities with the β-ketoadipate pathway. Trends Biotechnol 30:627–637CrossRefGoogle Scholar
  23. 23.
    Schlegel H, Kaltwasser H, Gottschalk G (1961) A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies. Arch Microbiol 38(3):209–222Google Scholar
  24. 24.
    Yang X, Jin G, Gong Z, Shen H, Song Y, Bai F, Zhao ZK (2014) Simultaneous utilization of glucose and mannose from spent yeast cell mass for lipid production by Lipomyces starkeyi. Bioresour Technol 158:383–387CrossRefGoogle Scholar
  25. 25.
    Nambou K, Zhao C, Wei L, Chen J, Imanaka T, Hua Q (2014) Designing of a cheap to run fermentation platform for an enhanced production of single cell oil from Yarrowia lipolytica DSM3286 as a potential feedstock for biodiesel. Bioresour Technol 173:324–333CrossRefGoogle Scholar
  26. 26.
    Daggett P-M, Simione FP (1987) Method of culturing freeze-dried microorganisms. US Patent US4672037AGoogle Scholar
  27. 27.
    Berny J-F, Hennebert G (1991) Viability and stability of yeast cells and filamentous fungus spores during freeze-drying: effects of protectants and cooling rates. Mycologia 83:805–815CrossRefGoogle Scholar
  28. 28.
    Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Nonconventional yeasts in biotechnology. Springer, New York, pp 313–388CrossRefGoogle Scholar
  29. 29.
    Gajdoš P, Nicaud JM, Rossignol T, Čertík M (2015) Single cell oil production on molasses by Yarrowia lipolytica strains overexpressing dga2 in multicopy. Appl Microbiol Biotechnol 99(19):8065–8074CrossRefGoogle Scholar
  30. 30.
    Blagodatskaj V, Kockova-Kratochvilova K (1973) The heterogeneity of the species Candida lipolytica Candida pseudolipolytica new species and Candida lipolytica var thermotolerans new variety. Biologia (Bratislava) 28(9):709–716Google Scholar
  31. 31.
    Barnett JA, Payne RW, Yarrow D (1983) Yeasts: characteristics and identification. Cambridge University Press, CambridgeGoogle Scholar
  32. 32.
    Qiao K, Wasylenko TM, Zhou K, Xu P, Stephanopoulos G (2017) Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol 35(2):173–177CrossRefGoogle Scholar
  33. 33.
    Wei Y, Siewers V, Nielsen J (2017) Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions. Appl Microbiol Biotechnol 101(9):3577–3585CrossRefGoogle Scholar
  34. 34.
    Xu P, Qiao K, Ahn WS, Stephanopoulos G (2016) Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci U S A 113(39):10848–10853CrossRefGoogle Scholar
  35. 35.
    Zhang H, Wu C, Wu Q, Dai J, Song Y (2016) Metabolic flux analysis of lipid biosynthesis in the yeast Yarrowia lipolytica using 13C-labeled glucose and gas chromatography-mass spectrometry. PLoS One 11(7):E0159187CrossRefGoogle Scholar
  36. 36.
    Friedlander J, Tsakraklides V, Kamineni A, Greenhagen EH, Consiglio AL, MacEwen K, Crabtree DV, Afshar J, Nugent RL, Hamilton MA, Shaw AJ, Suth CR, Stephanopoulos G, Brevnova EE (2016) Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnol Biofuels 9(1):77CrossRefGoogle Scholar
  37. 37.
    He Y, Li X, Ben H, Xue X, Yang B (2017) Lipid production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustain Chem Eng 5(3):2302–2311CrossRefGoogle Scholar
  38. 38.
    Korntner P, Sumerskii I, Bacher M, Rosenau T, Potthast A (2015) Characterization of technical lignins by NMR spectroscopy: optimization of functional group analysis by 31P NMR spectroscopy. Holzforschung:807.  https://doi.org/10.1515/hf-2014-0281
  39. 39.
    Ben H, Ragauskas AJ (2011) NMR characterization of pyrolysis oils from Kraft lignin. Energy Fuel 25(5):2322–2332CrossRefGoogle Scholar
  40. 40.
    Pu Y, Cao S, Ragauska AJ (2011) Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ Sci 4(9):3154–3166CrossRefGoogle Scholar
  41. 41.
    Sannigrahi P, Ragauskas AJ (2011) Characterization of fermentation residues from the production of bio-ethanol from lignocellulosic feedstocks. J Biobased Mater Bioenergy 5(4):514–519CrossRefGoogle Scholar
  42. 42.
    Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules 6(5):2815–2821CrossRefGoogle Scholar
  43. 43.
    Meng X, Sun Q, Kosa M, Huang F, Pu Y, Ragauskas AJ (2016) Physicochemical structural changes of poplar and switchgrass during biomass pretreatment and enzymatic hydrolysis. ACS Sustain Chem Eng 4(9):4563–4572CrossRefGoogle Scholar
  44. 44.
    Tolbert A, Akinosho H, Khunsupat R, Naskar AK, Ragauskas AJ (2014) Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels Bioprod Biorefin 8(6):836–856CrossRefGoogle Scholar
  45. 45.
    Le RK, Das P, Mahan KM, Anderson SA, Wells T Jr, Yuan JS, Ragauskas AJ (2017) Utilization of simultaneous saccharification and fermentation residues as feedstock for lipid accumulation in Rhodococcus opacus. AMB Express 7(1):185CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rosemary K. Le
    • 1
  • Kristina M. Mahan
    • 1
  • Arthur J. Ragauskas
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Biosciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Department of Forestry, Wildlife and Fisheries, Center of Renewable Carbon, Institute of AgricultureUniversity of TennesseeKnoxvilleUSA

Personalised recommendations