Advertisement

Fungi (Mold)-Based Lipid Production

  • Yan Yang
  • Fatemeh Heidari
  • Bo HuEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1995)

Abstract

There is an increasing need for the development of alternative energy sources with a focus on reducing greenhouse gas emissions and striving toward a sustainable economy. Bioethanol and biodiesel are currently the primary choices of alternative transportation fuels. At present, biodiesel is not competitive with conventional fuel due to its high price, and the only way to compete with conventional fuel is to improve the quality, reduce the costs, and coproduce value-added products. With the high demand for lipids in the energy sector and other industrial applications, microbial lipids accumulated from microorganisms, especially oleaginous fungi and yeasts have been the important topic of many recent research studies. This chapter summarizes the current status of knowledge and technology about lipid production by oleaginous fungi and yeasts for biofuel applications and other value-added products. The chapter focuses on several aspects such as the most promising oleaginous strains, strain development, improvement of lipid production, methods and protocols to cultivate oleaginous fungi, substrate utilization, fermentation process design, and downstream processing. The feasibility and challenges during the large-scale commercial production of microbial lipids as fuel sources are also discussed. It provides an overview of microbial lipid production biorefinery and also future development directions.

Key words

Single-cell oils Oleaginous fungi Microbial oil production Biofuel Biodiesel Oil processing by-products 

References

  1. 1.
    Ratledge C (1991) Microorganisms for lipids. Acta Biotechnol 11(5):429–438CrossRefGoogle Scholar
  2. 2.
    Biermann U, Friedt W, Lang S, Lühs W, Machmüller G, Metzger JO, Rüsch Gen Klaas M, Schäfer HJ, Schneider MP (2000) New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew Chem Int Ed Eng 39:2206–2224CrossRefGoogle Scholar
  3. 3.
    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Sakuradani E (2010) Advances in the production of various polyunsaturated fatty acids through oleaginous fungus Mortierella alpina breeding. Biosci Biotechnol Biochem 74:908–917PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Zhang J, Hu B (2012) Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull. Appl Biochem Biotechnol 166:1034–1046PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Meng X, Yang J, Xu X, Zhang L, Nie Q, Mian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5CrossRefGoogle Scholar
  7. 7.
    Patnayak S, Sree A (2005) Screening of bacterial associates of marine sponges for single cell oil and PUFA. Lett Appl Microbiol 40:358–363PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Xia C, Zhang J, Zhang W, Hu B (2011) A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnol Biofuels 4:15 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387CrossRefGoogle Scholar
  10. 10.
    Ratledge C (1993) Single cell oils—have they a biotechnological future? Trends Biotechnol 11:278–284PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2003) Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol 46:124–130PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hu C, Zhao X, Zhao J, Wu S, Zhao ZK (2009) Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 100(20):4843–4847CrossRefGoogle Scholar
  13. 13.
    Ruan Z, Zanotti M, Zhong Y, Liao W, Ducey C, Liu Y (2012) Co-hydrolysis of lignocellulosic biomass for microbial lipid accumulation. Biotechnol Bioeng 110:1039–1049PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Li Y, Zhao Z, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41:312–317CrossRefGoogle Scholar
  15. 15.
    Lin H, Cheng W, Ding HT, Chen XJ, Zhou QF, Zhao YH (2010) Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour Technol 101:7556–7562PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Vicente G, Bautista LF, Gutierrez FJ, Rodriguez R, Martinez V, Rodriguez-Frometa RA, Rui-Vazquez RM, Torres-Martinez S, Garre V (2010) Direct transformation of fungal biomass from submerged cultures into biodiesel. Energy Fuel 24:3173–3178CrossRefGoogle Scholar
  17. 17.
    Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815PubMedCrossRefGoogle Scholar
  18. 18.
    Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y (2012) Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour Technol 110:198–205PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Zeng J, Zheng Y, Yu X, Yu L, Gao D, Chen S (2013) Lignocellulosic biomass as a carbohydrate source for lipid production by Mortierella isabellina. Bioresour Technol 128:385–391PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wei H, Wang W, Yarbrough JM, Baker JO, Laurens L, Wychen SV, Chen X, Taylot LE II, Xu Q, Himmel ME, Zhang M (2013) Genomic, proteomic, and biochemical analyses of oleaginous Mucor circinelloides: evaluating its capability in utilizing cellulolytic substrates for lipid production. PLoS One 8:E71068PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Chen H, Liu T (1997) Inoculum effects on the production of γ-linolenic acid by the shake culture of Cunninghamella echinulata CCRC31840. Enzyme Microb Technol 21:137–142CrossRefGoogle Scholar
  22. 22.
    Fakas S, Papanikolaou S, Batsos A, Galiotou-Panoyotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33:573–580CrossRefGoogle Scholar
  23. 23.
    Gutiérrez A, López-García S, Garre V (2011) High reliability transformation of the basal fungus Mucor circinelloides by electroporation. J Microbiol Methods 84:442–446PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Rossi M, Amaretti A, Raimondi S, Leonardi A (2011) Getting lipids for biodiesel production from oleaginous fungi. In: Biodiesel: feedstocks and processing technologies. Intech. www.intechopen.com Google Scholar
  25. 25.
    Du Preez J, Immelman M, Kock JLF, Kilian SG (1995) Production of gamma-linolenic acid by Mucor circinelloides and Mucor rouxii with acetic acid as carbon substrate. Biotechnol Lett 17(9):933–938CrossRefGoogle Scholar
  26. 26.
    Mamatha S, Ravi R, Venkateswaran G (2008) Medium optimization of gamma linolenic acid production in Mucor rouxii CFR-G15 using RSM. Food Bioprocess Technol 1:405–409CrossRefGoogle Scholar
  27. 27.
    Somashekar D, Venkateshwaran G, Sambaiah K, Lokesh BR (2003) Effect of culture conditions on lipid and gamma-linolenic acid production by mucoraceous fungi. Process Biochem 38(12):1719–1724CrossRefGoogle Scholar
  28. 28.
    Eroshin V, Dediukhina EG, Satrutdinov AD, Chistiakova TI (2000) Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis. Process Biochem 35:1171–1175CrossRefGoogle Scholar
  29. 29.
    Aki T, Nagahata Y, Ishihara K, Tanaka Y, Morinaga T, Higashiyama K, Akimoto K, Fujikawa S, Kawamoto S, Shigeta S, Ono K, Suzuki O (2001) Production of arachidonic acid by filamentous fungus, Mortierella alliacea strain YN-15. J Am Oil Chem Soc 78:5999–5604CrossRefGoogle Scholar
  30. 30.
    Adachi D, Hama S, Numata T, Nakashima K, Ogino C, Fukuda H, Kondo A (2011) Development of an Aspergillus oryzae whole-cell biocatalyst coexpressing triglyceride and partial glyceride lipases for biodiesel production. Bioresour Technol 102(12):6723–6729PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Beopoulos A, Chardot T, Nicaud J (2009) Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91:692–696PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90:1219–1227CrossRefGoogle Scholar
  33. 33.
    Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756Google Scholar
  34. 34.
    Holdsworth J, Ratledge C (1991) Triacylglycerol synthesis in the oleaginous yeast Candida curvata. Lipids 26:111–118PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Meesters P, Huijberts G, Eggink G (1996) High cell density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol 45:575–579CrossRefGoogle Scholar
  36. 36.
    Zhang L, Tang Y, Guo ZP, Ding ZY, Shi GY (2011) Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae. Biotechnol Lett 33:1375–1380PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Wang S, Sun JS, Han BZ, Wu XZ (2007) Optimization of β-carotene production by Rhodotorula glutinis using high hydrostatic pressure and response surface methodology. J Food Sci 72:M325–M329PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Easterling ER, French WT, Harnandez R, Licha M (2009) The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour Technol 100:356–361PubMedCrossRefGoogle Scholar
  39. 39.
    Yu X, Zheng Y, Dorgan KM, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102:6134–6140CrossRefGoogle Scholar
  40. 40.
    Zhao X, Kong X, Hua Y, Feng B, Zhao Z (2008) Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Technol 110(5):405–412CrossRefGoogle Scholar
  41. 41.
    Jin M, Slininger PJ, Dien BS, Waghmode S, Moser BR, Orjuela A, Sousa Lda C, Balan V (2015) Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol 33(1):43–54PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Dey P, Banerjee J, Maiti M (2011) Comparative lipid profiling of two endophytic fungal isolates – Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock. Bioresour Technol 102:5815–5823PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Peng X, Chen H (2007) Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Ann Microbiol 57:239–242CrossRefGoogle Scholar
  44. 44.
    Subhash VG, Venkata Mohan S (2011) Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour Technol 102:9286–9290CrossRefGoogle Scholar
  45. 45.
    Kitcha S, Cheirsilp B (2014) Bioconversion of lignocellulosic palm byproducts into enzymes and lipid by newly isolated oleaginous fungi. Biochem Eng J 88:95–100CrossRefGoogle Scholar
  46. 46.
    Tanimura A, Takashima M, Sugita T, Endoh R, Kikukawa M, Yamaguchi S, Sakuradani E, Ogawa J, Shima J (2014) Selection of oleaginous yeasts with high lipid productivity for practical biodiesel production. Bioresour Technol 153:230–235CrossRefGoogle Scholar
  47. 47.
    Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051CrossRefGoogle Scholar
  48. 48.
    Weete J (1980) Sphingolipids. In: Lipid biochemistry of fungi and other organisms. Springer US, New York, pp 180–195CrossRefGoogle Scholar
  49. 49.
    Sitepu I, Sestric R, Ignatia L, Levin D, German JB, Gillies LA, Almada LA, Boundy-Mills KL (2013) Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresour Technol 144:360–369CrossRefGoogle Scholar
  50. 50.
    Wu S, Hu C, Jin G, Zhao X, Zhao ZK (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101(15):6124–6129CrossRefGoogle Scholar
  51. 51.
    Zhao X, Peng F, Du W, Liu C, Liu D (2012) Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosyst Eng 35:993–1004CrossRefGoogle Scholar
  52. 52.
    Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147:2857–2864PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Jang H, Lin Y, Yang S (2005) Effect of culture media and conditions on polyunsaturated fatty acids production by Mortierella alpina. Bioresour Technol 96:1633–1644PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Granger L-M, Perlot P, Goma G, Pareilleux A (1992) Kinetics of growth and fatty acid production of Rhodotorula glutinis. Appl Microbiol Biotechnol 37(1):13–17CrossRefGoogle Scholar
  55. 55.
    Uemura H (2012) Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives. Appl Microbiol Biotechnol 95:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Athenstaedt K, Jolivet P, Boulard C, Zivy M, Negroni L, Nicaud JM, Chardot T (2006) Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics 6:1450–1459PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Zavala-Moreno A, Arreguin-Espinosa R, Pardo JP, Romero-Aguilar L, Guerra-Sanchez G (2014) Nitrogen source affects glycolipid production and lipid accumulation in the phytopathogen fungus Ustilago maydis. Adv Microbiol 04:934–944CrossRefGoogle Scholar
  58. 58.
    Santamauro F, Whiffm FM, Scott RJ, Chuck CJ (2014) Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol Biofuels 110:198–205Google Scholar
  59. 59.
    Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056CrossRefGoogle Scholar
  60. 60.
    Liang M, Jiang J (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408CrossRefGoogle Scholar
  61. 61.
    Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang Y, Adams I, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 53:2013–2025CrossRefGoogle Scholar
  63. 63.
    Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74:7779–7789PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kalscheuer R, Luftmann H, Steinbuchel A (2004) Synthesis of novel lipids in Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl Environ Microbiol 70:7119–7125PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kalscheuer R (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Vazquez-Duhalt R, Greppin H (1987) Growth and production of cell constituents in batch cultures of Botryococcus sudeticus. Phytochemistry 26:885–889CrossRefGoogle Scholar
  67. 67.
    Xu J, Zhao X, Wang W, Du W, Liu D (2012) Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochem Eng J 65:30–36CrossRefGoogle Scholar
  68. 68.
    Zhu L, Zong M, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99:7881–7885PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Zhu M, Yu L-J, Li W, Zhou P-P, Li C-Y (2006) Optimization of arachidonic acid production by fed-batch culture of Mortierella alpina based on dynamic analysis. Enzyme Microb Technol 38:735–740CrossRefGoogle Scholar
  70. 70.
    Zhang J, Fang X, Zhu X-L, Yan L, Xu H-P, Zhao B-F, Chen L, Zhang X-D (2011) Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass Bioenergy 35(5):1906–1911CrossRefGoogle Scholar
  71. 71.
    Brown BD, Hsu KH, Hammond EG, Glatz B (1989) A relationship between growth and lipid accumulation in Candida curvata D. J Ferment Bioeng 68:344–352CrossRefGoogle Scholar
  72. 72.
    Béligon V, Poughon L, Christophe G, Lebert A, Larroche C, Fontanille C (2016) Validation of a predictive model for fed-batch and continuous lipids production processes from acetic acid using the oleaginous yeast Cryptococcus curvatus. Biochem Eng J 111:117–128CrossRefGoogle Scholar
  73. 73.
    Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82:43–49PubMedCrossRefGoogle Scholar
  74. 74.
    Abu O (2000) Changes in lipid, fatty acids and protein composition of sweet potato (Ipomoea batatas) after solid-state fungal fermentation. Bioresour Technol 72:189–192CrossRefGoogle Scholar
  75. 75.
    Peng X, Chen H (2008) Single cell oil production in solid-state fermentation by Microsphaeropsis sp. from steam-exploded wheat straw mixed with wheat bran. Bioresour Technol 99:3885–3889PubMedCrossRefGoogle Scholar
  76. 76.
    Economou CN, Makri A, Aggelis G, Pavlou S, Vayenas DV (2010) Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour Technol 101:1385–1388PubMedCrossRefGoogle Scholar
  77. 77.
    Liao W, Liu Y, Chen S (2007) Studying pellet formation of a filamentous fungus Rhizopus oryzae to enhance organic acid production. Appl Biochem Biotechnol 137:689–701PubMedGoogle Scholar
  78. 78.
    Liu W, Wang Y, Yu Z, Bao J (2012) Simultaneous saccharification and microbial lipid fermentation of corn stover by oleaginous yeast Trichosporon cutaneum. Bioresour Technol 118:13–18PubMedCrossRefGoogle Scholar
  79. 79.
    Heredia L, Ratledge C (1988) Simultaneous utilization of glucose and xylose by Candida curvata D in continuous culture. Biotechnol Lett 10(1):25–30CrossRefGoogle Scholar
  80. 80.
    Daniel HJ, Otto RT, Binder M, Reuss M, Syldatk C (1999) Production of sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214 using deproteinized whey concentrates as substrates. Appl Microbiol Biotechnol 51:40–45CrossRefGoogle Scholar
  81. 81.
    Hansson L, Dostlek M (1986) Influence of cultivation conditions on lipid production by Cryptococcus albidus. Appl Microbiol Biotechnol 24:12–18Google Scholar
  82. 82.
    Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G (2007) Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. Eur J Lipid Sci Technol 109:1060–1070CrossRefGoogle Scholar
  83. 83.
    Huang C, Zong M-H, Wu H, Liu Q-P (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100:4535–4538PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Liang Y, Tang T, Siddaramu T, Choudhary R, Umagiliyage AL (2012) Lipid production from sweet sorghum bagasse through yeast fermentation. Renew Energy 40:130–136CrossRefGoogle Scholar
  85. 85.
    Wild R, Patil S, Popovic M, Zappi M, Dufreche S, Bajpai R (2010) Lipids from Lipomyces starkeyi. Food Technol Biotechnol 48:329–335Google Scholar
  86. 86.
    Wang Q, Guo F-J, Rong Y-J, Chi Z-M (2012) Lipid production from hydrolysate of cassava starch by Rhodosporidium toruloides 21167 for biodiesel making. Renew Energy 46:164–168CrossRefGoogle Scholar
  87. 87.
    Fakas S, Certik M, Papanikolaou S, Aggelis G, Komaitis M, Galiotou-Panayotou M (2008) Gama-linolenic acid production by Cunninghamella echinulata growing on complex organic nitrogen sources. Bioresour Technol 99:5986–5990PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Ykema A, Verbree EC, Kater MM, Smit H (1988) Optimization of lipid production in the oleaginous yeast Apiotrichum curvatum in whey permeate. Appl Microbiol Biotechnol 29:211–218Google Scholar
  89. 89.
    Akhtar P, Gray J, Asghar A (1998) Synthesis of lipids by certain yeast strains grown on whey permeate. J Food Lipids 5:283–297CrossRefGoogle Scholar
  90. 90.
    Christophe G, Deo JL, Kumar V, Nouaille R, Fontanille P, Larroche C (2011) Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus. Appl Biochem Biotechnol 167:1270–1279PubMedCrossRefGoogle Scholar
  91. 91.
    Athalye S, Garcia R, Wen Z (2009) Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. J Agric Food Chem 57:2739–2744PubMedCrossRefGoogle Scholar
  92. 92.
    Chang Y-H, Chang K-S, Lee C-F, Hsu C-L, Huang C-W, Jang H-D (2015) Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source. Biomass Bioenergy 72:95–103CrossRefGoogle Scholar
  93. 93.
    Xue F, Gao B, Zhu Y, Zhang Z, Feng W, Tan T (2010) Pilot-scale production of microbial lipid using starch wastewater as raw material. Bioresour Technol 101:6092–6095PubMedCrossRefGoogle Scholar
  94. 94.
    Tsigie YA, Wang CY, Truong CT, Ju YH (2011) Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol 102:9216–9222PubMedCrossRefGoogle Scholar
  95. 95.
    Xiaowei P, Hongzhang C (2012) Hemicellulose sugar recovery from steam-exploded wheat straw for microbial oil production. Process Biochem 47:209–215CrossRefGoogle Scholar
  96. 96.
    Oliveira Mdos S, Feddern V, Kupski L, Cipolatti EP, Badiale-Furlong E, de Souza-Soares LA (2011) Changes in lipid, fatty acids and phospholipids composition of whole rice bran after solid-state fungal fermentation. Bioresour Technol 102:8335–8338PubMedCrossRefGoogle Scholar
  97. 97.
    Economou C, Aggelis G, Pavlou S, Vayenas DV (2011) Single cell oil production from rice hulls hydrolysate. Bioresour Technol 102:9737–9742PubMedCrossRefGoogle Scholar
  98. 98.
    Hu C, Wu S, Wang Q, Jin G, Shen H, Zhao ZK (2011) Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnol Biofuels 4:25PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Aggelis G, Komaitis M (1999) Enhancement of single cell oil production by Yarrowia lipolytica growing in the presence of Teucrium polium L. aqueous extract. Biotechnol Lett 21:747–749CrossRefGoogle Scholar
  100. 100.
    Tsigie YA, Wang C-Y, Kasim NS, Diem Q-D, Huynh L-H, Ho Q-P, Truong C-T, Ju Y-H (2012) Oil production from Yarrowia lipolytica Po1g using rice bran hydrolysate. J Biomed Biotechnol 2012:1–10CrossRefGoogle Scholar
  101. 101.
    Makri A, Fakas S, Aggelis G (2010) Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour Technol 101:2351–2358PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Gong Z, Wang Q, Shen H, Hu C, Jin G, Zhao ZK (2012) Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresour Technol 117:20–24CrossRefGoogle Scholar
  103. 103.
    Mitra D, Rasmussen ML, Chand P, Chintareddy VR, Yao L, Grewell D, Verkade JG, Wang T, van Leeuwen JH (2012) Value-added oil and animal feed production from corn-ethanol stillage using the oleaginous fungus Mucor circinelloides. Bioresour Technol 107:368–375PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Slininger PJ, Dien BS, Kurtzman CP, Moser BR, Bakota EL, Thompson SR, O’Bryan PJ, Cotta MA, Balan V, Jin M, Sousa Lda C, Dale BE (2016) Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnol Bioeng 113:1676–1690PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Chang V, Holtzapple M (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–38PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Huang C, Chen X-F, Xiong L, Chen X-D, Ma L-L, Chen Y (2013) Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv 31:129–139PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Lorenz E, Runge D, Marbà-Ardébol AM, Schmacht M, Stahl U, Senz M (2017) Systematic development of a two-stage fed-batch process for lipid accumulation in Rhodotorula glutinis. J Biotechnol 246:4–15PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Lin J, Shen H, Tan H, Zhao X, Wu S, Hu C, Zhao ZK (2011) Lipid production by Lipomyces starkeyi cells in glucose solution without auxiliary nutrients. J Biotechnol 152:184–188PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Lynd L (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465CrossRefGoogle Scholar
  111. 111.
    Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820PubMedPubMedCentralGoogle Scholar
  112. 112.
    Sheehan J, Dunahay T, Benemann J, Roessler P (1998) Look back at the U.S. department of energy’s aquatic species program: biodiesel from algae; close-out report. Office of Scientific and Technical Information (OSTI). Prepared for: U.S. Department of Energy’s Office of Fuels Development, pp 1–328Google Scholar
  113. 113.
    Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14:421–426CrossRefGoogle Scholar
  114. 114.
    Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Cheng F (2010) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Apt K, Behrens P (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226CrossRefGoogle Scholar
  117. 117.
    Wen Z, Chen F (2001) Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzyme Microb Technol 29:341–347CrossRefGoogle Scholar
  118. 118.
    Sansawa H, Endo H (2004) Production of intracellular phytochemicals in chlorella under heterotrophic conditions. J Biosci Bioeng 98:437–444PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Barclay W, Meager K, Abril J (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129CrossRefGoogle Scholar
  120. 120.
    Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37:1271–1287PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Heredia-Arroyo T, Wei W, Ruan R, Hu B (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35:2245–2253CrossRefGoogle Scholar
  122. 122.
    Ren LJ, Ji XJ, Huang H, Qu L, Feng Y, Tong QQ, Ouyang PK (2010) Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl Microbiol Biotechnol 87:1649–1656PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Yang HL, Lu CK, Chen SF, Chen YM, Chen YM (2010) Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar Biotechnol 12:173–185PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    De Swaaf M, Sijtsma L, Pronk J (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Wu Z, Shi X (2007) Optimization for high-density cultivation of heterotrophic chlorella based on a hybrid neural network model. Lett Appl Microbiol 44:13–18PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Riesenberg D, Guthke R (1999) High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol 51:422–430PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577CrossRefGoogle Scholar
  130. 130.
    Hughes E, Benemann J (1997) Biological fossil CO2 mitigation. Energy Convers Manag 38:S467–S473CrossRefGoogle Scholar
  131. 131.
    Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36PubMedCrossRefGoogle Scholar
  133. 133.
    Espinosa-Gonzalez I, Parashar A, Bressler D (2014) Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresour Technol 155:170–176PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Yan D, Lu Y, Chen YF, Wu Q (2011) Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol 102:6487–6493PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Kim D, Hur S (2013) Growth and fatty acid composition of three heterotrophic chlorella species. Algae 28:101–109CrossRefGoogle Scholar
  136. 136.
    Wan MX, Wang RM, Xia JL, Rosenberg JN, Nie ZY, Kobayashi N, Oyler GA, Betenbaugh MJ (2012) Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnol Bioeng 109:1958–1964PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Li P, Miao X, Li R, Zhong J (2011) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol 2011:1–8Google Scholar
  138. 138.
    De Swaaf M, Pronk J, Sijtsma L (2003) Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol 61:40–43PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Song X, Zang X, Zhang X (2015) Production of high docosahexaenoic acid by Schizochytrium sp. using low-cost raw materials from food industry. J Oleo Sci 64:197–204PubMedCrossRefGoogle Scholar
  140. 140.
    Ren H-Y, Liu B-F, Ma C, Zhao L, Ren N-Q (2013) A new lipid-rich microalga Scenedesmus sp. strain r-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnol Biofuels 6:143PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Wen Z, Chen F (2002) Continuous cultivation of the diatom Nitzschia laevis for eicosapentaenoic acid production: physiological study and process optimization. Biotechnol Prog 18:21–28PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Yu X, Zhao P, He C, Li J, Tang X, Zhou J, Huang Z (2012) Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock. Bioresour Technol 121:256–262PubMedCrossRefGoogle Scholar
  143. 143.
    Kim J, Yoo G, Lee H, Lim J, Kim K, Kim CW, Park MS, Yang J-W (2013) Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol Adv 31:862–876PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Folch J, Lees M, Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509PubMedPubMedCentralGoogle Scholar
  145. 145.
    Uquiche E, Jerez M, Ortiz J (2008) Effect of pretreatment with microwaves on mechanical extraction yield and quality of vegetable oil from Chilean hazelnuts (Gevuina avellana Mol). Innov Food Sci Emerg Technol 9:495–500CrossRefGoogle Scholar
  146. 146.
    Singh J, Bargale P (2000) Development of a small capacity double stage compression screw press for oil expression. J Food Eng 43:75–82CrossRefGoogle Scholar
  147. 147.
    Topare N, Raut SJ, Genge CV, Khedkar SV, Chavan YPO, Bhagat SL (2011) Extraction of oil from algae by solvent extraction and oil expeller method. Int J Chem Sci 9(4):1746–1750Google Scholar
  148. 148.
    Pradhan RC, Mishra S, Naik SN, Bhatnagar N, Vijay VK (2011) Oil expression from Jatropha seeds using a screw press expeller. Biosyst Eng 109:158–166CrossRefGoogle Scholar
  149. 149.
    King J (2002) Supercritical fluid extraction: present status and prospects. Grasas Aceites 53:8–21CrossRefGoogle Scholar
  150. 150.
    Salgin U, Doker O, Calimli A (2006) Extraction of sunflower oil with supercritical CO2: experiments and modeling. J Supercrit Fluids 38:326–331CrossRefGoogle Scholar
  151. 151.
    Del Valle J, Germain JC, Uquiche E, Zetzl C, Brunner G (2006) Microstructural effects on internal mass transfer of lipids in prepressed and flaked vegetable substrates. J Supercrit Fluids 37:178–190CrossRefGoogle Scholar
  152. 152.
    Krohn B, McNeff CV, Yan B, Nowlan D (2011) Production of algae-based biodiesel using the continuous catalytic Mcgyan® process. Bioresour Technol 102:94–100PubMedCrossRefGoogle Scholar
  153. 153.
    Umdu E, Tuncer M, Seker E (2009) Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour Technol 100:2828–2831PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Vijayaraghavan K, Hemanathan K (2009) Biodiesel production from freshwater algae. Energy Fuel 23:5448–5453CrossRefGoogle Scholar
  155. 155.
    Tran D, Yeh K-L, Chen C-L, Chang J-S (2012) Enzymatic transesterification of microalgal oil from Chlorella vulgaris Esp-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresour Technol 108:119–127PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Patil P, Gude VG, Mannarswamy A, Deng S, Cooke P, Munson-McGee S, Rhodes I, Lammers P, Nirmalakhandan N (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol 102:118–122PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Rathana Y, Roces SA, Bacani FT, Tan RR, Kubouchi M, Yimsiri P (2010) Microwave-enhanced alkali catalyzed transesterification of kenaf seed oil. Int J Chem React Eng 8.  https://doi.org/10.2202/1542-6580.2324
  158. 158.
    Refaat A (2009) Different techniques for the production of biodiesel from waste vegetable oil. Int J Environ Sci Technol 7:183–213CrossRefGoogle Scholar
  159. 159.
    Patil P, Gude VG, Mannarswamy A, Cooke P, Munson-McGee S, Nirmalakhandan N, Lammers P, Deng S (2011) Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresour Technol 102:1399–1405PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Geuens J, Kremsner JM, Nebel BA, Schober S, Dommisse RA, Mittelbach M, Tavernier S, Kappe CO, Maes BUW (2007) Microwave-assisted catalyst-free transesterification of triglycerides with 1-butanol under supercritical conditions. Energy Fuel 22:643–645CrossRefGoogle Scholar
  161. 161.
    Ji J, Wang J, Li Y, Yu Y, Xu Z (2006) Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics 44:E411–E414PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Amaro H, Guedes A, Malcata F (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88:3402–3410CrossRefGoogle Scholar
  163. 163.
    Wahlen B, Willis R, Seefeldt L (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102:2724–2730PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Cao H, Zhang Z, Wu X, Miao X (2013) Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification. Biomed Res Int 2013:1–6Google Scholar
  165. 165.
    Johnson M, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 23:5179–5183CrossRefGoogle Scholar
  166. 166.
    Ehimen E, Sun Z, Carrington C (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89:677–684CrossRefGoogle Scholar
  167. 167.
    Özgül-Yücel S, Türkay S (2002) Variables affecting the yields of methyl esters derived from in situ esterification of rice bran oil. J Am Oil Chem Soc 79:611–614CrossRefGoogle Scholar
  168. 168.
    Ehimen E, Sun Z, Carrington G (2012) Use of ultrasound and co-solvents to improve the in-situ transesterification of microalgae biomass. Procedia Environ Sci 15:47–55CrossRefGoogle Scholar
  169. 169.
    Cheng J, Yu T, Li T, Zhou J, Cen K (2013) Using wet microalgae for direct biodiesel production via microwave irradiation. Bioresour Technol 131:531–535PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Goyal H, Seal D, Saxena R (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energy Rev 12:504–517CrossRefGoogle Scholar
  171. 171.
    Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378CrossRefGoogle Scholar
  172. 172.
    Mckendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Hirano A, Hon-Nami K, Hunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45:399–404CrossRefGoogle Scholar
  174. 174.
    Mackay S, Gomes E, Holliger C, Bauer R, Schwitzguébel JP (2015) Harvesting of Chlorella sorokiniana by co-culture with the filamentous fungus Isaria fumosorosea: a potential sustainable feedstock for hydrothermal gasification. Bioresour Technol 185:353–361PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    López Barreiro D, Prins W, Ronsse F, Brilman W (2013) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy 53:113–127CrossRefGoogle Scholar
  176. 176.
    Dote Y, Sawayama S, Innoue S, Minowa T, Yokoyama S-Y (1994) Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 73:1855–1857CrossRefGoogle Scholar
  177. 177.
    Demirbaş A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41:633–646CrossRefGoogle Scholar
  178. 178.
    Jena U, Das K (2011) Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuel 25:5472–5482CrossRefGoogle Scholar
  179. 179.
    Maher K, Bressler D (2007) Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour Technol 98:2351–2368PubMedCrossRefGoogle Scholar
  180. 180.
    Demirbaş A (2006) Oily products from mosses and algae via pyrolysis. Energy Sources Part A 28:933–940CrossRefGoogle Scholar
  181. 181.
    Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 99:7941–7953PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Phang SM, Miah MS, Yeoh BG, Hashim MA (2000) Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol 12(3–5):395–400CrossRefGoogle Scholar
  183. 183.
    Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Ghirardi M (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Feofilova E, Sergeeva Y, Ivashechkin A (2010) Biodiesel-fuel: content, production, producers, contemporary biotechnology (review). Appl Biochem Microbiol 46:369–378CrossRefGoogle Scholar
  186. 186.
    Dahiya A (2015) Algae biomass cultivation for advanced biofuel production. In: Bioenergy. Elsevier, Amsterdam, pp 219–238CrossRefGoogle Scholar
  187. 187.
    Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL (2014) Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv 32:1336–1360CrossRefGoogle Scholar
  188. 188.
    Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279PubMedCrossRefGoogle Scholar
  189. 189.
    Metzger P, Largeau C (2004) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496PubMedCrossRefGoogle Scholar
  190. 190.
    Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328PubMedCrossRefGoogle Scholar
  191. 191.
    Chen G, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28:607–616PubMedCrossRefGoogle Scholar
  192. 192.
    Williams P, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review and analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554CrossRefGoogle Scholar
  193. 193.
    Simopoulos A (1999) Essential fatty acids in health and chronic disease. Am J Clin Nutr 70:560S–569SPubMedCrossRefGoogle Scholar
  194. 194.
    Simopoulos A (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21:495–505PubMedCrossRefGoogle Scholar
  195. 195.
    Behrens P (2005) Photobioreactors and fermentors, in algal culturing techniques. The light and dark sides of growing algae. In: Anderson RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, pp 189–203Google Scholar
  196. 196.
    Mendes A, Reis A, Vasconcelos R, Guerra P (2008) Crypthecodinium cohnii with emphasis on DHA production: a review. J Appl Phycol 21:199–214CrossRefGoogle Scholar
  197. 197.
    Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Cohen G (2011) Microbial biochemistry. Springer, NetherlandsCrossRefGoogle Scholar
  199. 199.
    Guerin M, Huntley M, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216PubMedCrossRefGoogle Scholar
  200. 200.
    Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Könst P, Franssen MCR, Scott EL, Sanders JPM (2011) Stabilization and immobilization of Trypanosoma brucei ornithine decarboxylase for the biobased production of 1,4-diaminobutane. Green Chem 13:1167CrossRefGoogle Scholar
  202. 202.
    Marris E (2006) Black is the new green. Nature 442:624–626PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems – a review. Mitig Adapt Strat Gl 11(2):403–427 CrossRefGoogle Scholar
  204. 204.
    Lal R (2008) Black and buried carbons’ impacts on soil quality and ecosystem services. Soil Tillage Res 99:1–3CrossRefGoogle Scholar
  205. 205.
    Tan H, Aziz A, Aroua M (2013) Glycerol production and its applications as a raw material: a review. Renew Sust Energy Rev 27:118–127CrossRefGoogle Scholar
  206. 206.
    Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142CrossRefGoogle Scholar
  207. 207.
    Ueno Y, Kurano N, Miyachi S (1998) Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J Ferment Bioeng 86:38–43CrossRefGoogle Scholar
  208. 208.
    Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Asachi R, Karimi K, Taherzadeh M (2011) Ethanol production by mucor indicus using the fungal autolysate as a nutrient supplement. In: Proceedings of the world renewable energy congress. Sweden Linköping University Electronic Press, Linköping, SwedenGoogle Scholar
  210. 210.
    Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Donot F, Fontana A, Baccou JC, Strub C, Schorr-Galindo S (2014) Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics. Biomass Bioenergy 68:135–150CrossRefGoogle Scholar
  212. 212.
    Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Bioproducts and Biosystems EngineeringUniversity of MinnesotaSaint PaulUSA

Personalised recommendations