Advertisement

Volatile Fatty Acid Production from Anaerobic Digestion of Organic Residues

  • Sibel Uludag-Demirer
  • Wei Liao
  • Goksel N. DemirerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1995)

Abstract

Short chain volatile fatty acids (VFAs) from acetic acid (C2) to valeric acid (C5) are important starting chemicals for chemical industry. The production of VFAs from rejected resources (organic residues) using self-sustaining technologies has an exciting potential in supporting the US chemical industry to achieve the goal that 20% of chemicals produced in the USA will be bio-based. Acidogenic anaerobic digestion as a robust, well-established, and versatile biological technology can be applied as an alternative approach for the valorization of organic residues (municipal, agricultural, and industrial wastes) by the production of VFAs. In a typical acidogenic anaerobic digestion operation, residue type, pretreatment, reactor operation, and VFA recovery are the key factors that influence VFA production. This chapter discusses these factors and provides an experimental approach of VFA production from organic residues.

Key words

Acidogenic anaerobic digestion Organic residue Volatile fatty acids Liquid–liquid extraction 

References

  1. 1.
    Baumann I, Westermann P (2016) Microbial production of short chain fatty acids from lignocellulosic biomass: current processes and market. Biomed Res Int 2016:8469357CrossRefGoogle Scholar
  2. 2.
    Alkaya E, Demirer GN (2011) Anaerobic acidification of sugar-beet processing wastes: effect of operational parameters. Biomass Bioenergy 35:32–39CrossRefGoogle Scholar
  3. 3.
    Chen R, Murillo-Roos M, Zhong Y, Marsh T, Bustamante M, Hernandez W, Uribe L, Uribe-Lorio L, Kirk D, Reinhold D, Miranda A, Baudrit-Buiz D, Aguilar J, Rodriguez W, Srivastava A, Liao W (2016) Responses of anaerobic microorganisms to different culture conditions and corresponding effects on biogas production and solid digestate quality. Biomass Bioenergy 85:84–93CrossRefGoogle Scholar
  4. 4.
    Yang F, Chen R, Yue Z, Liao W, Marsh T (2016) Phylogenetic analysis of anaerobic co-digestion of animal manure and corn stover reveals linkages between bacterial communities and digestion performance. Adv Microbiol 6:879–897CrossRefGoogle Scholar
  5. 5.
    Kondo K, Beppu T, Horinouchi S (1995) Cloning, sequencing, and characterization of the gene encoding the smallest subunit of the three-component membrane-bound alcohol dehydrogenase from Acetobacter pasteurianus. J Bacteriol 177:5048–5055CrossRefGoogle Scholar
  6. 6.
    Rojas-Sossa JP, Murillo-Roos M, Uribe L, Uribe-Lorio L, Marsh T, Larsen N, Chen R, Miranda A, Solis K, Rodriguez W, Kirk D, Liao W (2017) Effects of coffee processing residues on anaerobic digestion microorganisms and corresponding digestion performance. Bioresour Technol 245:714–723CrossRefGoogle Scholar
  7. 7.
    Queirós D, Sousa R, Pereira S, Serafim LS (2017) Valorization of a pulp industry by-product through the production of short-chain organic acids. Fermentation 3:20CrossRefGoogle Scholar
  8. 8.
    Dogan E, Dunaev T, Erguder TH, Demirer GN (2008) Performance of leaching bed reactor converting the organic fraction of municipal solid waste to organic acids and alcohols. Chemosphere 74:797–803CrossRefGoogle Scholar
  9. 9.
    Erguder TH, Demirer GN (2016) Organic acid production from the organic fraction of municipal solid waste and cow manure in leaching bed reactors. Environ Eng Manag J 15:2487–2495CrossRefGoogle Scholar
  10. 10.
    Ma H, Liu H, Zhang L, Yang M, Fu B, Liu H (2017) Novel insight into the relationship between organic substrate composition and volatile fatty acids distribution in acidogenic co-fermentation. Biotechnol Biofuels 10:137CrossRefGoogle Scholar
  11. 11.
    Lee WS, Chua ASM, Yeoh HK, Ngoh GC (2014) A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J 235:83–99CrossRefGoogle Scholar
  12. 12.
    Cavinato C, Frison N, Herrero N, Gottardo M, Ros C, Strazzera G, Cherubin A, Fatone F, Pavan P, Bolzonella D (2017) Volatile fatty acids production from organic waste for biorefinery platforms. In: 5th international conference on sustainable solid waste management, Athens, 21–24 June 2017Google Scholar
  13. 13.
    Liu H, Wang J, Liu X, Fu B, Chen J, Yu H (2012) Acidogenic fermentation of proteinaceous sewage sludge: effect of pH. Water Res 46:799–807CrossRefGoogle Scholar
  14. 14.
    Nielsen PH, Jahn A (1999) Extraction of EPS. In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances: characterization, structure and function. Springer, BerlinGoogle Scholar
  15. 15.
    Zhang B, Zhang LL, Zhang SC, Shi HZ, Cai WM (2005) The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ Technol 26:329–340CrossRefGoogle Scholar
  16. 16.
    Jankowska E, Chwiałkowska J, Stodolny M, Oleskowicz-Popiel P (2015) Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation. Bioresour Technol 190:274–280CrossRefGoogle Scholar
  17. 17.
    Jiang J, Zhang Y, Li K, Wanga Q, Gong C, Li M (2013) Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresour Technol 143:525–530CrossRefGoogle Scholar
  18. 18.
    Yu HQ, Fang HHP (2002) Acidogenesis of dairy wastewater at various pH levels. Water Sci Technol 45:201–206CrossRefGoogle Scholar
  19. 19.
    Horiuchi JI, Shimizu T, Tada K, Kanno T, Kobayashi M (2002) Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour Technol 82:209–213CrossRefGoogle Scholar
  20. 20.
    Feng L, Wang H, Chen Y, Wang Q (2009) Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors. Bioresour Technol 100:44–49CrossRefGoogle Scholar
  21. 21.
    Xiong H, Chen JH, Wang H, Shi H (2012) Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids. Bioresour Technol 119:285–292CrossRefGoogle Scholar
  22. 22.
    Demirer GN, Chen S (2005) Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem 40:3542–3549CrossRefGoogle Scholar
  23. 23.
    Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Arachae Press, Nashville, USAGoogle Scholar
  24. 24.
    APHA (2012) Standard methods for the examination of water and waste water, 22nd edn. American Public Health Association, Washington, DCGoogle Scholar
  25. 25.
    Dogan E, Demirer GN (2009) Volatile fatty acid production from organic fraction of municipal solid waste through anaerobic acidogenic digestion. Environ Eng Sci 26:1443–1450CrossRefGoogle Scholar
  26. 26.
    Cecchi F, Battistoni P, Pavan P, Fava G, Mata-Álvarez J (1994) Anaerobic digestion of OFMSW and BNR processes: a possible integration–Preliminary results. Water Sci Technol 30:65–72CrossRefGoogle Scholar
  27. 27.
    Maharaj I, Elefsiniotis P (2001) The role of HRT and low temperature on the acid-phase anaerobic digestion of municipal and industrial wastewaters. Bioresour Technol 76:191–197CrossRefGoogle Scholar
  28. 28.
    Zhuo G, Yan Y, Tan X, Dai X, Zhou Q (2012) Ultrasonic-pretreated waste activated sludge hydrolysis and volatile fatty acid accumulation under alkaline conditions: effect of temperature. J Biotechnol 159:27–31CrossRefGoogle Scholar
  29. 29.
    Longo S, Katsou E, Malamis S, Frison N, Renzi D, Fatone F (2015) Recovery of volatile fatty acids from fermentation of sewage sludge in municipal wastewater treatment plants. Bioresour Technol 175:436–444CrossRefGoogle Scholar
  30. 30.
    Traverso P, Pavan P, Bolzonella D, Innocenti L, Cecchi F, Mata-Alvarez J (2000) Acidogenic fermentation of source separated mixtures of vegetables and fruits wasted from supermarkets. Biodegradation 11:407–414CrossRefGoogle Scholar
  31. 31.
    Yu HQ, Fang HHP (2003) Acidogenesis of gelatin-rich wastewater in an upflow anaerobic reactor: influence of pH and temperature. Water Res 37:55–66CrossRefGoogle Scholar
  32. 32.
    Demirer GN, Othman M (2008) Two phase thermophilic acidification and mesophilic methanogenesis anaerobic digestion of waste activated sludge. Environ Eng Sci 25:1291–1300CrossRefGoogle Scholar
  33. 33.
    Guerrero L, Omil F, Mendez R, Lema JM (1999) Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein. Water Res 33:3281–3290CrossRefGoogle Scholar
  34. 34.
    Micolucci F, Gottardo M, Bolzonella D, Pavan P (2014) Automatic process control for stable bio-hythane production in two-phase thermophilic anaerobic digestion of food waste. Int J Hydrog Energy 39:17563–17572CrossRefGoogle Scholar
  35. 35.
    Lu J, Gavala HN, Skiadas IV, Mladenovska Z, Ahring BK (2008) Improving anaerobic sewage sludge digestion by implementation of a hyperthermophilic prehydrolysis step. J Environ Manag 88:881–889CrossRefGoogle Scholar
  36. 36.
    Cavinato C, Bolzonella D, Fatone F, Cecchi F, Pavan P (2011) Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour Technol 102:8605–8611CrossRefGoogle Scholar
  37. 37.
    Yu J (2001) Production of PHA from starchy wastewater via organic acids. J Biotechnol 86:105–112CrossRefGoogle Scholar
  38. 38.
    Rincón B, Sánchez E, Raposo F, Borja R, Travieso L, Martín MA, Martín A (2008) Effect of organic loading rate on the performance of anaerobic acidogenic fermentation of two-phase olive mill solid residue. Waste Manag 28:870–877CrossRefGoogle Scholar
  39. 39.
    Sans C, Mata-Alvarez J, Cecchi F, Pavan P, Bassetti A (1995) Volatile fatty acids production by mesophilic fermentation of mechanically sorted urban organic wastes in a plug-flow reactor. Bioresour Technol 51:89–96CrossRefGoogle Scholar
  40. 40.
    Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domiguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485CrossRefGoogle Scholar
  41. 41.
    Eggeman T, Verser D (2005) Recovery of organic acids from fermentation broths. Appl Biochem Biotechnol 122:605–618CrossRefGoogle Scholar
  42. 42.
    Gluszcz P, Jamroz T, Sencio B, Ledakowicz S (2004) Equilibrium and dynamic investigations of organic acids adsorption onto ion-exchange resins. Bioprocess Biosyst Eng 26:185–190CrossRefGoogle Scholar
  43. 43.
    Weier AJ, Glatz BA, Glatz CE (1992) Recovery of propionic and acetic acids from fermentation broth by electrodialysis. Biotechnol Prog 8:479–485CrossRefGoogle Scholar
  44. 44.
    Saha B, Chopade SP, Mahajani SM (2000) Recovery of dilute acetic acid through esterification in a reactive distillation column. Catal Today 60:147–157CrossRefGoogle Scholar
  45. 45.
    Huang C, Xu T, Zhang Y, Xue Y, Chen G (2007) Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. J Membr Sci 288:1–12CrossRefGoogle Scholar
  46. 46.
    Joglekar HG, Rahman I, Babu S, Kulkarni BD, Joshi A (2006) Comparative assessment of downstream processing options for lactic acid. Sep Purif Technol 52:1–17CrossRefGoogle Scholar
  47. 47.
    Matsumoto M, Otono T, Kondo K (2001) Synergistic extraction of organic acids with tri-n-octylamine and tri-n-butylphosphate. Sep Purif Technol 24:337–342CrossRefGoogle Scholar
  48. 48.
    Eyal AM, Canari R (1995) pH dependence of carboxylic and mineral acid extraction by amine based extractants: effect of pKa amine basicity, and diluent properties. Ind Eng Chem Res 34:1789–1798CrossRefGoogle Scholar
  49. 49.
    Tamada JA, Kertes AS, King CJ (1990) Extraction of carboxylic acids with amine extractants. 1. Equilibria and law of mass action modeling. Ind Eng Chem Res 29:1319–1326CrossRefGoogle Scholar
  50. 50.
    Yang S, White SA, Hsu S (1991) Extraction of carboxylic acids with tertiary and quaternary amines: effect of pH. Ind Eng Chem Res 30:1335–1342CrossRefGoogle Scholar
  51. 51.
    Sabolova E, Schlosser S, Martak J (2001) Liquid-liquid equilibria of butyric acid in water + solvent systems with trioctylamine as extractant. J Chem Eng Data 46:735–745CrossRefGoogle Scholar
  52. 52.
    Alkaya E, Kaptan S, Ozkan L, Uludag-Demirer S, Demirer GN (2009) Recovery of Acids from anaerobic acidification broth by liquid-liquid extraction. Chemosphere 77:1137–1142CrossRefGoogle Scholar
  53. 53.
    Gungor-Demirci G, Demirer GN (2004) Effect of initial COD concentration, nutrient addition, temperature and microbial acclimation on anaerobic treatability of broiler and cattle manure. Bioresour Technol 93:109–117CrossRefGoogle Scholar
  54. 54.
    Bengtsson S, Hallquist J, Werker A, Welander T (2008) Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production. Biochem Eng J 40:492–499CrossRefGoogle Scholar
  55. 55.
    Hong C, Haiyun W (2010) Optimization of volatile fatty acid production with cosubstrate of food wastes and dewatered excess sludge using response surface methodology. Bioresour Technol 101:5487–5493CrossRefGoogle Scholar
  56. 56.
    Gottardo M, Micolucci F, Mattioli A, Faggian S, Cavinato C, Pavan P (2015) Hydrogen and methane production from biowaste and sewage sludge by two phases anaerobic codigestion. Chem Eng Trans 43:379–384Google Scholar
  57. 57.
    Hong SK, Shirai Y, Aini ARN, Hassan MA (2009) Semi-continuous and continuous anaerobic treatment of palm oil mill effluent for the production of organic acids and polyhydroxyalkanoates. Res J Environ Sci 3:552–559CrossRefGoogle Scholar
  58. 58.
    Beccari M, Bertin L, Dionisi D, Fava F, Lampis S, Majone M, Valentino F, Vallini G, Villano M (2009) Exploiting olive oil mill effluents as a renewable resource for production of biodegradable polymers through a combined anaerobic–aerobic process. J Chem Technol Biotechnol 84:901–908CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sibel Uludag-Demirer
    • 1
  • Wei Liao
    • 1
  • Goksel N. Demirer
    • 2
    Email author
  1. 1.Anaerobic Digestion Research and Education Center (ADREC), Biosystems and Agricultural EngineeringMichigan State UniversityEast LansingUSA
  2. 2.Central Michigan University, School of Engineering & Technology, Mount PleasantMIUSA

Personalised recommendations