Advertisement

Producing Oleaginous Microorganisms Using Wastewater: Methods and Guidelines for Lab- and Industrial-Scale Production

  • Kayla M. Rude
  • Tyler J. Barzee
  • Annaliese K. FranzEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1995)

Abstract

Cultivation of oleaginous microorganisms on wastewater provides alternative biofuel options while also acting as a remediation technique for alternative wastewater treatment. This chapter describes guidelines and methods for the production of oleaginous microorganisms—with a focus on microalgae—using wastewater as a growth medium while considering a variety of general challenges for both lab- and industrial-scale production. Cultivation techniques described here range in scale from microplates with 10-mL working volumes, up to multigallon, industrial-scale microorganism cultivation, with a focus on microalgae. This chapter includes guidelines for the preparation of wastewater and selection of oleaginous microorganisms combined with methods for the production of oleaginous microorganisms cultivated using wastewater.

Key words

Oleaginous microorganism Microalgae Cultivation Wastewater Remediation Biodiesel 

References

  1. 1.
    Davis R, Kinchin C, Markham J, et al (2014) Process design and economics for the conversion of algal biomass to biofuels: Algal biomass fractionation to lipid and carbohydrates-derived fuel products. NREL/TP-5100-62368, Golden, CO.Google Scholar
  2. 2.
    IEA Bioenergy (2017) State of technology review–algae bioenergy. Report for IEA Bioenergy funded by IEA Bioenergy: Task 39, Golden, CO.Google Scholar
  3. 3.
    American Public Health Association (ed) (2017) Standard methods for the examination of water and wastewater,. 23rd ed. American Public Health Association, Washington, D.C.Google Scholar
  4. 4.
    Kumar KS, Dahms H, Won E et al (2015) Microalgae–a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352CrossRefGoogle Scholar
  5. 5.
    Akpor OB (2014) Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Adv Biosci Bioeng 2:37Google Scholar
  6. 6.
    Clausen CA (2000) Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood. Waste Manag Res 18:264–268CrossRefGoogle Scholar
  7. 7.
    Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257CrossRefGoogle Scholar
  8. 8.
    Kobayashi N, Noel EA, Barnes A et al (2013) Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour Technol 150:377–386CrossRefGoogle Scholar
  9. 9.
    Chi Z, Zheng Y, Jiang A, Chen S (2011) Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Appl Biochem Biotechnol 165:442–453CrossRefGoogle Scholar
  10. 10.
    Nayak M, Karemore A, Sen R (2016) Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application. Algal Res 16:216–223CrossRefGoogle Scholar
  11. 11.
    González LE, Cañizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60:259–262CrossRefGoogle Scholar
  12. 12.
    Choi H-J (2016) Dairy wastewater treatment using microalgae for potential biodiesel application. Environ Eng Res 21:393–400CrossRefGoogle Scholar
  13. 13.
    Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553CrossRefGoogle Scholar
  14. 14.
    Chen B, Wan C, Mehmood MA et al (2017) Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–a review. Bioresour Technol 244:1198–1206CrossRefGoogle Scholar
  15. 15.
    Wenbiao SH, Renjie J, Abd T (2016) Optimization of aeration for biodiesel production by Scenedesmus obliquus grown in municipal wastewater. Bioprocess Biosyst Eng 39:1073–1079CrossRefGoogle Scholar
  16. 16.
    Hodaifa G, Martínez ME, Sánchez S (2008) Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresour Technol 99:1111–1117CrossRefGoogle Scholar
  17. 17.
    Mata TM, Melo AC, Meireles S et al (2013) Potential of microalgae Scenedesmus obliquus grown in brewery wastewater for biodiesel production. Chem Eng Trans 32:901–906Google Scholar
  18. 18.
    Hodaifa G, Martínez ME, Sánchez S (2010) Influence of temperature on growth of Scenedesmus obliquus in diluted olive mill wastewater as culture medium. Eng Life Sci 10:257–264CrossRefGoogle Scholar
  19. 19.
    Kaewkannetra P, Enmak P, Chiu T (2012) The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production. Biotechnol Bioprocess Eng 17:591–597CrossRefGoogle Scholar
  20. 20.
    Kong QX, Li L, Martinez B et al (2010) Culture of microalgae Clamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160:9–18CrossRefGoogle Scholar
  21. 21.
    Chaiklahan R, Chirasuwan N, Siangdung W et al (2010) Cultivation of Spirulina platensis using pig wastewater in a semi-continuous process. J Microbiol Biotechnol 20:609–614CrossRefGoogle Scholar
  22. 22.
    Kulkarni SD, Auti T, Saraf S (2016) Bioremediation study of dairy effluent by using Spirulina platensis. Res J Life Sci Bioinform Pharm Chem Sci 1:317–326Google Scholar
  23. 23.
    Panyakampol J, Cheevadhanarak S, Sutheeworapong S et al (2015) Physiological and transcriptional responses to high temperature in Arthrospira (Spirulina) platensis C1. Plant Cell Physiol 56:481–496CrossRefGoogle Scholar
  24. 24.
    De Oliveira MACL, Monteiro MPC, Robbs PG, Leite SGF (1999) Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquac Int 7:261–275CrossRefGoogle Scholar
  25. 25.
    Gupta N, Manikandan NA, Pakshirajan K (2017) Real-time lipid production and dairy wastewater treatment using Rhodococcus opacus in a bioreactor under fed-batch, continuous and continuous cell recycling modes for potential biodiesel application. Biofuels 7269:1–7Google Scholar
  26. 26.
    Goswami L, Tejas Namboodiri MM, Vinoth Kumar R et al (2017) Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewater. Renew Energy 105:400–406CrossRefGoogle Scholar
  27. 27.
    Gonzalez-Garcia Y, Hernandez R, Zhang G et al (2013) Lipids accumulations in Rhodotorula glutinis and Cryptococcus curvatus growing on distillery wastewater as culture medium. Environ Prog Sustain Energy 32:69–74CrossRefGoogle Scholar
  28. 28.
    Meesters PAEP, Huijberts GNM, Eggink G (1996) High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol 45:575–579CrossRefGoogle Scholar
  29. 29.
    Meng X, Yang J, Xu X et al (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5CrossRefGoogle Scholar
  30. 30.
    Pidou M, Ometto F, Whitton R et al (2016) Influence of microalgal N and P composition on wastewater nutrient remediation. Water Res 91:371–378CrossRefGoogle Scholar
  31. 31.
    U.S. Environmental Protection Agency (2010) Part 437–the centralized waste treatment point source category. U.S. Environmental Protection Agency, Washington, DC, pp 359–380Google Scholar
  32. 32.
    Kumar K, Banerjee D, Das D (2014) Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresour Technol 152:225–233CrossRefGoogle Scholar
  33. 33.
    Van Der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122:435–445CrossRefGoogle Scholar
  34. 34.
    U.S. Environmental Protection Agency (2010) Technology-Based Effluent Limitations. In: National Pollutant Discharge Elimination System (NPDES) Permit Writers’ Manual. Washington, DC, pp 1–49Google Scholar
  35. 35.
    Bacellar Mendes LB, Vermelho AB (2013) Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol Biofuels 6:152CrossRefGoogle Scholar
  36. 36.
    (ABO) Algae Biomass Organization (2015) Industrial algae measurements. (ABO) Algae Biomass Organization, Preston, MNGoogle Scholar
  37. 37.
    Das P, Thaher MI, Abdul Hakim MAQM et al (2016) Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media. Bioresour Technol 216:824–829CrossRefGoogle Scholar
  38. 38.
    Henriques M, Silva A, Rocha J (2007) Extraction and quantification of pigments from a marine microalga: a simple and reproducible method. Commun Curr Res Educ Top Trends Appl Microbiol 2:586–593Google Scholar
  39. 39.
    Milledge J, Heaven S (2013) A review of the harvesting of microalgae for biofuel production. Rev Environ Sci Biotechnol 12:165–178CrossRefGoogle Scholar
  40. 40.
    Coutteau P, Lavens P, Sorgeloos P (1996) Manual on the production and use of live food for aquaculture. FAO Tech Pap 1–47Google Scholar
  41. 41.
    Beuckels A, Smolders E, Muylaert K (2015) Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res 77:98–106CrossRefGoogle Scholar
  42. 42.
    Ji MK, Abou-Shanab RAI, Kim SH et al (2013) Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol Eng 58:142–148CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kayla M. Rude
    • 1
    • 2
  • Tyler J. Barzee
    • 3
  • Annaliese K. Franz
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryUniversity of California, DavisDavisUSA
  2. 2.Agricultural and Environmental Chemistry Graduate GroupUniversity of CaliforniaDavisUSA
  3. 3.Department of Biological and Agricultural EngineeringUniversity of California, DavisDavisUSA

Personalised recommendations