Advertisement

Conversion of Microbial Lipids to Biodiesel and Basic Lab Tests for Analysis of Fuel-Quality Parameters

  • Annaliese K. FranzEmail author
  • Cody Yothers
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1995)

Abstract

This chapter describes lab-scale procedures for the direct conversion of microbial lipids to fatty acid methyl esters (FAMEs) for use as biodiesel fuel. Methods for the gas chromatography analysis of FAME profiles and equations to predict several fuel-quality parameters are detailed herein. This chapter also provides a complete list summarizing each of the fuel quality tests (e.g., sample size and equipment) that are required by ASTM International D6751 regulations for pure biodiesel fuel (B100) or blend stock. Recommendations for the decolorization of microbial lipid sources containing pigments are also included. This resource should provide a guide to basic conversion and characterization of microbial-derived biodiesel fuels and a roadmap for more-detailed testing required to assess commercial feasibility.

Key words

Biodiesel Lipids Fatty acid Transesterification Fatty acid methyl ester Mono-alkyl ester Ethyl ester Fuel quality Biofuel Microbial lipids Microalgae Yeast Cyanobacteria ASTM 

References

  1. 1.
    ASTM D6751-15ce1 Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels (2015) ASTM International, West Conshohocken, PAGoogle Scholar
  2. 2.
    Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756CrossRefGoogle Scholar
  3. 3.
    Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sust Energ Rev 10(3):248–268CrossRefGoogle Scholar
  4. 4.
    Bello EI, Mogaji TS, Agge M (2011) The effects of transesterification on selected fuel properties of three vegetable oils. J Mech Eng Res 3(7):218–225Google Scholar
  5. 5.
    Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86(10):1059–1070CrossRefGoogle Scholar
  6. 6.
    Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100(1):261–268CrossRefGoogle Scholar
  7. 7.
    Ichihara K, Fukubayashi Y (2010) Preparation of fatty acid methyl esters for gas-liquid chromatography. J Lipid Res 51(3):635–640CrossRefGoogle Scholar
  8. 8.
    Richardson CE, Hennebelle M, Otoki Y, Zamora D, Yang J, Hammock BD, Taha AY (2017) Lipidomic analysis of oxidized fatty acids in plant and algae oils. J Agric Food Chem 65(9):1941–1951CrossRefGoogle Scholar
  9. 9.
    Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob AR (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91(1):102–111CrossRefGoogle Scholar
  10. 10.
    O’Neil GW, Knothe G, Williams JR, Burlow NP, Culler AR, Corliss JM, Carmichael CA, Reddy CM (2014) Synthesis and analysis of an alkenone-free biodiesel from Isochrysis sp. Energy Fuel 28(4):2677–2683CrossRefGoogle Scholar
  11. 11.
    O’Neil GW, Knothe G, Williams JR, Burlow NP, Reddy CM (2016) Decolorization improves the fuel properties of algal biodiesel from Isochrysis sp. Fuel 179:229–234CrossRefGoogle Scholar
  12. 12.
    Issariyakul T, Dalai AK (2010) Biodiesel production from greenseed canola oil. Energy Fuel 24(9):4652–4658CrossRefGoogle Scholar
  13. 13.
    ASTM D4057-12 Standard Practice for Manual Sampling of Petroleum and Petroleum Products (2012) ASTM International, West Conshohocken, PAGoogle Scholar
  14. 14.
    ASTM D4177-16e1 Standard Practice for Automatic Sampling of Petroleum and Petroleum Products (2016) ASTM International, West Conshohocken, PAGoogle Scholar
  15. 15.
    ASTM D613-17b Standard Test Method for Cetane Number of Diesel Fuel Oil (2017) ASTM International, West Conshohocken, PAGoogle Scholar
  16. 16.
    ASTM D2500-16b Standard Test Method for Cloud Point of Petroleum Products and Liquid Fuels (2016) ASTM International, West Conshohocken, PAGoogle Scholar
  17. 17.
    ASTM D5771-17 Standard Test Method for Cloud Point of Petroleum Products and Liquid Fuels (Optical Detection Stepped Cooling Method) (2017) ASTM International, West Conshohocken, PAGoogle Scholar
  18. 18.
    ASTM D7501-12a Standard Test Method for Determination of Fuel Filter Blocking Potential of Biodiesel (B100) Blend Stock by Cold Soak Filtration Test (CSFT) (2012) ASTM International, West Conshohocken, PAGoogle Scholar
  19. 19.
    ASTM D1160-15 Standard Test Method for Distillation of Petroleum Products at Reduced Pressure (2015) ASTM International, West Conshohocken, PAGoogle Scholar
  20. 20.
    ASTM D93-16a Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester (2016) ASTM International, West Conshohocken, PAGoogle Scholar
  21. 21.
    ASTM D445-17a Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity) (2017) ASTM International, West Conshohocken, PAGoogle Scholar
  22. 22.
    EN 15751 Automotive Fuels – Fatty Acid Methyl Ester (FAME) Fuel and Blends with Diesel Fuel – Determination of Oxidation Stability by Accelerated Oxidation Method (2014) European Committee for StandardizationGoogle Scholar
  23. 23.
    ASTM D5453-16e1 Standard Test Method for Determination of Total Sulfur in Light Hydrocarbons, Spark Ignition Engine Fuel, Diesel Engine Fuel, and Engine Oil by Ultraviolet Fluorescence (2016) ASTM International, West Conshohocken, PAGoogle Scholar
  24. 24.
    ASTM D4951-14 Standard Test Method for Determination of Additive Elements in Lubricating Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (2014) ASTM International, West Conshohocken, PAGoogle Scholar
  25. 25.
    ASTM D7111-16 Standard Test Method for Determination of Trace Elements in Middle Distillate Fuels by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) (2016) ASTM International, West Conshohocken, PAGoogle Scholar
  26. 26.
    EN 14538 Fat and Oil Derivatives – Fatty Acid Methyl Ester (FAME) – Determination of Ca, K, Mg and Na Content by Optical Emission Spectral Analysis with Inductively Coupled Plasma (ICP OES) (2006) European Committee for StandardizationGoogle Scholar
  27. 27.
    ASTM D664-11ae1 Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration (2011) ASTM International, West Conshohocken, PAGoogle Scholar
  28. 28.
    EN 14110 Fat and Oil Derivatives – Fatty Acid Methyl Esters (FAME) – Determination of Methanol Content (2003) European Committee for StandardizationGoogle Scholar
  29. 29.
    ASTM D4530-15 Standard Test Method for Determination of Carbon Residue (Micro Method) (2015) ASTM International, West Conshohocken, PAGoogle Scholar
  30. 30.
    ASTM D130-12 Standard Test Method for Corrosiveness to Copper from Petroleum Products by Copper Strip Test (2012) ASTM International, West Conshohocken, PAGoogle Scholar
  31. 31.
    ASTM D6584-13e1 Standard Test Method for Determination of Total Monoglycerides, Total Diglycerides, Total Triglycerides, and Free and Total Glycerin in B-100 Biodiesel Methyl Esters by Gas Chromatography (2013) ASTM International, West Conshohocken, PAGoogle Scholar
  32. 32.
    ASTM D874-13a Standard Test Method for Sulfated Ash from Lubricating Oils and Additives (2013) ASTM International, West Conshohocken, PAGoogle Scholar
  33. 33.
    ASTM D2709-16 Standard Test Method for Water and Sediment in Middle Distillate Fuels by Centrifuge (2016) ASTM International, West Conshohocken, PAGoogle Scholar
  34. 34.
    ASTM D1298-12b Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method (2012) ASTM International, West Conshohocken, PAGoogle Scholar
  35. 35.
    ASTM D240-17 Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (2017) ASTM International, West Conshohocken, PAGoogle Scholar
  36. 36.
    Sanz-Tejedor MA, Arroyo Y, San José J (2016) Influence of degree of unsaturation on combustion efficiency and flue gas emissions of burning five refined vegetable oils in an emulsion burner. Energy Fuel 30(9):7357–7366CrossRefGoogle Scholar
  37. 37.
    ASTM D1541-97 Standard Test Method for Total Iodine Value of Drying Oils and Their Derivatives (Withdrawn) (2006) ASTM International, West Conshohocken, PAGoogle Scholar
  38. 38.
    Knothe G, Krahl J, Van Gerpen J (2015) The biodiesel handbook. Elsevier, AmsterdamGoogle Scholar
  39. 39.
    Mittelbach M, Remschmidt C (2004) Biodiesel—the comprehensive handbook. Martin Mittelbach, Graz, Austria. There is no corresponding record for this referenceGoogle Scholar
  40. 40.
    Knothe G (2001) Analytical methods used in the production and fuel quality assessment of biodiesel. Trans ASAE 44(2):193CrossRefGoogle Scholar
  41. 41.
    Gerpen JV (2005) Biodiesel processing and production. Fuel Process Technol 86(10):1097–1107CrossRefGoogle Scholar
  42. 42.
    Van Gerpen J, Knothe G (2005) Basics of the transesterification reaction. In: The biodiesel handbook. AOCS Press/Academic Press, London, pp 26–41Google Scholar
  43. 43.
    Van Gerpen J, Canakci M (1999) Biodiesel production via acid catalisis. Trans ASAE 42:1203–1210CrossRefGoogle Scholar
  44. 44.
    Ataya F, Dubé MA, Ternan M (2007) Acid-catalyzed transesterification of canola oil to biodiesel under single-and two-phase reaction conditions. Energy Fuel 21(4):2450–2459CrossRefGoogle Scholar
  45. 45.
    Anastopoulos G, Zannikou Y, Stournas S, Kalligeros S (2009) Transesterification of vegetable oils with ethanol and characterization of the key fuel properties of ethyl esters. Energies 2(2):362–376CrossRefGoogle Scholar
  46. 46.
    Thanh LT, Okitsu K, Boi LV, Maeda Y (2012) Catalytic technologies for biodiesel fuel production and utilization of glycerol: a review. Catalysts 2(1):191–222CrossRefGoogle Scholar
  47. 47.
    Nadkarni R (2016) Analysis of biofuels – a laboratory resource, MNL77-EB. ASTM International, West Conshohocken, PACrossRefGoogle Scholar
  48. 48.
    ASTM D7344-17 Standard Test Method for Distillation of Petroleum Products and Liquid Fuels at Atmospheric Pressure (Mini Method) (2017) ASTM International, West Conshohocken, PAGoogle Scholar
  49. 49.
    American Oil Chemists S, Firestone D (2004) Official methods and recommended practices of the American Oil Chemists’ Society. AOCS, ChampaignGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of California, DavisDavisUSA
  2. 2.Agricultural and Environmental Chemistry Graduate GroupUniversity of CaliforniaDavisUSA

Personalised recommendations