Microbial Lipid Alternatives to Plant Lipids

  • A. Daniel Jones
  • Kyria L. Boundy-Mills
  • G. Florin Barla
  • Sandeep Kumar
  • Bryan Ubanwa
  • Venkatesh BalanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1995)


Lipids are in high demand in food production, nutritional supplements, detergents, lubricants, and biofuels. Different oil seeds produced from plants are conventionally extracted to yield lipids. With increasing population and reduced availability of cultivable land, conventional methods of producing lipids alone will not satisfy increasing demand. Lipids produced using different microbial sources are considered as sustainable alternative to plant derived lipids. Various microorganisms belonging to the genera of algae, bacteria, yeast, fungi, or marine-derived microorganisms such as thraustochytrids possess the ability to accumulate lipids in their cells. A variety of microbial production technologies are being used to cultivate these organisms under specific conditions using agricultural residues as carbon source to be cost competitive with plant derived lipids. Microbial oils, also known as single cell oils, have many advantages when compared with plant derived lipids, such as shorter life cycle, less labor required, season and climate independence, no use of arable land and ease of scale-up. In this chapter we compare the lipids derived from plants and different microorganisms. We also highlight various analytical techniques that are being used to characterize the lipids produced in oleaginous organisms and their applications in various processes.

Key words

Lipids Oleaginous organisms Analytical methods Classification Economics 



A.D.J. acknowledges support from the USDA National Institute of Food and Agriculture, Hatch project MICL02474. VB thanks the University of Houston and the State of Texas for startup funds.


  1. 1.
    Patel A, Shindhu DK, Arora N, Singh RP, Pruthi V, Pruthi PA (2015) Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresour Technol 197:91–98PubMedCrossRefGoogle Scholar
  2. 2.
    Colin R, James PW (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Elsevier Science, New YorkGoogle Scholar
  3. 3.
    Bharathiraja B, Sridharan S, Sowmya V, Yuvaraj D, Praveenkumar R (2017) Microbial oil—a plausible alternate resource for food and fuel. Bioresour Technol 233:423–432PubMedCrossRefGoogle Scholar
  4. 4.
    Christophe G, Kumar V, Nouaille R et al (2012) Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food? Braz Arch Biol and Technol 55(1):29–46CrossRefGoogle Scholar
  5. 5.
    Sakuradani E, Ando E, Ogawa A et al (2009) Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Appl Microbiol Biotechnol 84(1):1–10PubMedCrossRefGoogle Scholar
  6. 6.
    Gurovic V, Soledad M, Gentili AR, Oliviera NL, SusanaRodríguez M (2014) Lactic acid bacteria isolated from fish gut produce conjugated linoleic acid without the addition of exogenous substrate. Process Biochem 49:1071–1077CrossRefGoogle Scholar
  7. 7.
    Beligon V, Christophe G, Fontanille P et al (2016) Microbial lipids as potential source to food supplements. Curr Opin Food Sci 7:35–42CrossRefGoogle Scholar
  8. 8.
    Gorissen L, De Vuyst L, Raes K et al (2012) Conjugated linoleic and linolenic acid production kinetics by bifidobacteria differ among strains. Int J Food Microbiol 155:234–240PubMedCrossRefGoogle Scholar
  9. 9.
    Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652CrossRefGoogle Scholar
  10. 10.
    Zielińska A, Nowak I (2014) Fatty acids in vegetable oils and their importance in cosmetic industry. Chemix 68:103–110Google Scholar
  11. 11.
    Koller M, Maršálekc L, Dias MMDS, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38CrossRefGoogle Scholar
  12. 12.
    USDA, Foreign Agriculture Services (2017) Global oilseed demand growth forecast to outpace production.Google Scholar
  13. 13.
    Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, Fayaz H (2013) Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sust Energ Rev 18:211–245CrossRefGoogle Scholar
  14. 14.
    Küçükugurluoglu Y, Karasalihoglu S, Vatansever U, Biner B, Acunaş B, Pala O (2005) Castor oil plant seed poisoning. Case Rep Clin Pract Rev 6:55–57Google Scholar
  15. 15.
    Carman GM, Han G-S (2009) Regulation of phospholipid synthesis in yeast. J Lipid Res 50(Supplement):S69–S73PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Thevenieau F, Nicaud J-M (2013) Microorganisms as sources of oils. Oilseeds Fats Crops Lipids 20(6):D603Google Scholar
  17. 17.
    Hanstein J (1880) Ueber die Gestaltungsvorgange in den Zellkerne bei der Theilung der Zellen. Botanische Abhandlungen aus dem Gebiet der Morphologie und Physiologie. Adolph Marcus, Bonn, p 4Google Scholar
  18. 18.
    Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40(5):325–438PubMedCrossRefGoogle Scholar
  19. 19.
    Hammerschlag A (1889) Bacteriologisch-Chemische Untersuchungen der Tuberkelbacillen. Monatsh Chem 10(1):9–18CrossRefGoogle Scholar
  20. 20.
    Anderson RJ (1932) The chemistry of the lipoids of tubercle bacilli. Physiol Rev 12(2):166–189CrossRefGoogle Scholar
  21. 21.
    Alvarez HM, Pucci OH, Steinbüchel A (1997) Lipid storage compounds in marine bacteria. Appl Microbiol Biotechnol 47(2):132–139CrossRefGoogle Scholar
  22. 22.
    Kaneda T (1991) Iso-fatty and anteiso-fatty acids in bacteria—biosynthesis, function, and taxonomic significance. Microbiol Rev 55(2):288–302PubMedPubMedCentralGoogle Scholar
  23. 23.
    Alvarez H, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60(4):367–376CrossRefGoogle Scholar
  24. 24.
    Lemoigne M (1926) Produit de déshydratation et de polymérisation de l’acide ß-oxybutyrique. Bull Soc Chim Biol 8:770–782Google Scholar
  25. 25.
    Akhtar P, Gray JI, Asghar A (1998) Synthesis of lipids by certain yeast strains grown on whey permeate. J Food Lipids 5:283–297CrossRefGoogle Scholar
  26. 26.
    Wu S, Hu C, Jin C, Zhao X, Zhao ZB (2010) Phosphate limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101:6124–6129CrossRefGoogle Scholar
  27. 27.
    Granger LM, Perlot P, Goma G, Pareilleux A (1993) Effect of various nutrient limitations on fatty acid production by Rhodotorula glutinis. Appl Microbiol Biotechnol 38:784–789CrossRefGoogle Scholar
  28. 28.
    Easterling ER, French WT, Hernandez R, Licha M (2009) The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour Technol 100:356–361PubMedCrossRefGoogle Scholar
  29. 29.
    Eroshin VK, Satroutdinov AD, Dedyukhina EG, Chistyakova TI (2000) Arachidonic acid production by Mortierella alpine with growth-coupled lipid synthesis. Proc Chem 35:1171–1175Google Scholar
  30. 30.
    Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G (2009) Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour Technol 100:118–6120CrossRefGoogle Scholar
  31. 31.
    Dyal SD, Narine SS (2005) Implications for the use of Mortierella fungi in the industrial production of essential fatty acids. Food Res Int 38:445–467CrossRefGoogle Scholar
  32. 32.
    Cheirsilp B, Suwannarat W, Niyomdecha R (2011) Mixed culture of oleaginous yeast Rhodotorula glutinis and microalgae Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnol 28:362–368CrossRefGoogle Scholar
  33. 33.
    Sawangkeaw R, Ngamprasertsith S (2013) A review of lipid-based biomasses as feedstocks for biofuels production. Renew Sust Energy Rev 25:97–108CrossRefGoogle Scholar
  34. 34.
    Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756CrossRefGoogle Scholar
  35. 35.
    Goold H, Beisson F, Pentier G, Li-Beisson Y (2015) Microalgal lipid droplets: composition, diversity, biogenesis and functions. Plant Cell Rep 34(4):545–555PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    de Jaeger L, Verbeek RE, Draaisma RB, Martens DE, Springer J, Eggink G, Wijffels RH (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol Biofuels 7:69PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Du Z-Y, Benning C (2016) Triacylglycerol accumulation in photosynthetic cells in plants and algae. In: Nakamura Y, LiBeisson Y (eds) Lipids in plant and algae development, vol 86. Springer International Publishing, Cham, pp 179–205CrossRefGoogle Scholar
  38. 38.
    Liu B, A. Vieler A, Li C, Jones AD, Benning C (2013) Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica. Bioresour Technol 146: 310-316PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Yao L, Gerde JA, Lee SL, Wang T, Harrata KA (2015) Microalgae lipid characterization. J Agric Food Chem 63(6):1773–1787PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Shruthi P, Rajeshwari T, Mrunalini BR, Girish V, Girisha ST (2014) Evaluation of oleaginous bacteria for potential biofuel. Int J Curr Microbiol Appl Sci 3(9):47–57Google Scholar
  41. 41.
    Zhang X, Agrawal A, San K-Y (2012) Improving fatty acid production in Escherichia coli through the overexpression of malonyl coA—acyl carrier protein transacylase. Biotechnol Prog 28:60–65PubMedCrossRefGoogle Scholar
  42. 42.
    Gupta A, Barrow CJ, Puri M (2012) Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv 30:1733–1745PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Ugalde G, Armenta RE, Kermanshahi-pour A, Sun Z, Berryman KT, Brooks MS (2018) Improvement of culture conditions for cell biomass and fatty acid production by marine thraustochytrid F24-2. J Appl Phycol 30:329–339CrossRefGoogle Scholar
  44. 44.
    Singh A, Ward OP (1997) Microbial production of docosahexaenoic acid (DHA, C22:6). Adv Appl Microbiol 45:271–312PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Bajpai PK, Bajpai P, Ward OP (1991) Optimization of production of docosahexaenoic acid (DHA) by Thraustochytrium aureum ATCC 34304. J Am Oil Chem Soc 68(7):509–514CrossRefGoogle Scholar
  46. 46.
    Napier JA (2007) The production of unusual fatty acids in transgenic plants. Annu Rev Plant Biol 58:295–319PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Baud S (2018) Seeds as oil factories. Plant Reprod 31:213–235PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Barthole G, Lepiniec L, Rogowsky PM, Baud S (2012) Controlling lipid accumulation in cereal grains. Plant Sci 185–186:33–39PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Marchive C, Nikovics K, To A, Lepiniec L, Baud S (2014) Transcriptional regulation of fatty acid production in higher plants: molecular bases and biotechnological outcomes. Eur J Lipid Sci Technol 116:1332–1343CrossRefGoogle Scholar
  50. 50.
    Chen G-C, Su H-M, Lin Y-S, Tsou P-Y, Chyan J-H, Chao P-M (2016) A conjugated fatty acid present at high levels in bitter melon seed favorably affects lipid metabolism in hepatocytes by increasing NAD+/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathway. J Nutr Biochem 33:28–35PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Bates PD (2016) Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis. Biochim Biophys Acta 1861:1214–1225PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Nguyen HT, Park H, Koster KL, Cahoon RE, Nguyen HTM, Shanklin J, Clemente TE, Cahoon EB (2015) Redirection of metabolic flux for higher levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Plant Biotechnol J 13:38–50PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ruiz-Lopez N, Haslam RP, Usher S, Napier JA, Sayanova O (2015) An alternative pathway for the effective production of the omega-3 long-chain polyunsaturates EPA and ETA in transgenic oilseeds. Plant Biotechnol J 13:1264–1275PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Vanhercke T, Wood CC, Stymne S, Singh SP, Green AG (2013) Metabolic engineering of plant oils and waxes for use as industrial feedstocks. Plant Biotechnol J 11:197–210PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Beopoulos A, Mrozova Z, Thevenieau F, Le Dall M-T, Hapala I, Papanikolaou S, Chardot T, Nicaud J-M (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74(24):7779–7789PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Liang M-H, Jiang J-G (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408CrossRefGoogle Scholar
  57. 57.
    Dulermo T, Nicaud J-M (2011) Involvement of G3P shuttle and β-oxidation pathway into the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 13:482–491PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Groenewald M, Boekhout T, Neuvéglise C, Gaillardin C, van Dijck PW, Wyss M (2014) Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol 40:187–206PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9PubMedCrossRefGoogle Scholar
  60. 60.
    Miao XL, Wu QY (2004) Bio-oil fuel production from microalgae after heterotrophic growth. Renew Energy 4:41–44Google Scholar
  61. 61.
    O’Brien RD (2008) Fats and oils: formulating and processing for applications, 3rd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  62. 62.
    Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1105CrossRefGoogle Scholar
  63. 63.
    Hassan M, Blanc PJ, Pareilleux A, Goma G (1994) Selection of fatty acid auxotrophs from the oleaginous yeast Cryptococcus curvatus and production of cocoa-butter equivalents in batch mode. Biotechnol Lett 16:819–824CrossRefGoogle Scholar
  64. 64.
    Jin M, Slininger PJ, Dien BS, Waghmode S, Moser BR, Orjuela A, Sousa LDC, Balan V (2015) Microbial lipid based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol 33(1):43–54PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Hussain MS, Rodriguez GM, Gao D, Spagnuolo M, Gambill L, Blenner M (2016) Recent advances in bioengineering of the oleaginous yeast Yarrowia lipolytica. AIMS Bioengineering 3(4):493–514CrossRefGoogle Scholar
  66. 66.
    Carsanba E, Papanikolaou S, Erten H (2018) Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica. Crit Rev Biotechnol 38(8):1230–1243PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ledesma-Amaro R, Nicaud J-M (2016) Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res 61:40–50PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20:155–160CrossRefGoogle Scholar
  69. 69.
    Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos LK (2014) Design and technoeconomic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116:566–577CrossRefGoogle Scholar
  70. 70.
    Lee JE, Vadlani PV, Min D (2017) Sustainable production of microbial lipids from lignocellulosic biomass using oleaginous yeast cultures. J Sus Bioenerg Sys 7:36–50Google Scholar
  71. 71.
    Bellou S, Triantaphyllidou I-E, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G (2016) Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Cur Opin Biotechnol 37:24–35CrossRefGoogle Scholar
  72. 72.
    Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056CrossRefGoogle Scholar
  73. 73.
    Leiva-Candia DE, Pinzi S, Redel-Macias MD, Koutinas A, Webb C, Dorado MP (2014) The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel 123:33–42CrossRefGoogle Scholar
  74. 74.
    Chiu S-Y, Kao C-Y, Chen T-Y, Chang Y-B, Kou C-M, Lin C-S (2015) Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour Technol 184:179–189PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Dong T, Knoshaug EP, Pienkos PT, Laurens LML (2016) Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review. Appl Energy 177:879–895CrossRefGoogle Scholar
  76. 76.
    Ratledge C (1992) Microbial lipids: commercial realities or academic curiosities. In: Kyle D, Ratledge C (eds) Industrial applications of single cell oils. AOCS Press, Champaign, IL, pp 1–15Google Scholar
  77. 77.
    Liu B, Benning C (2013) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24:300–309PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Lundin H (1950) Fat synthesis by micro-organisms and its possible applications in industry. J Inst Brew 56(1):17–28CrossRefGoogle Scholar
  79. 79.
    Sitepu I, Garay L, Sestric R, Levin D, Block DE, German J, Boundy-Mills K (2014) Oleaginous yeasts for biodiesel: current and future trends in biology and production. J Biotechnol Adv 32(7):1336–1360CrossRefGoogle Scholar
  80. 80.
    Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Athenstaedt K, Daum G (2006) The life cycle of neutral lipids: synthesis, storage and degradation. Cell Mol Life Sci 63:1355–1369PubMedCrossRefGoogle Scholar
  82. 82.
    Wältermann M, Stöveken T, Steinbüchel A (2007) Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthases/acyl-CoA: diacylglycerol acyltransferases. Biochimie 89(2):230–242PubMedCrossRefGoogle Scholar
  83. 83.
    Probst KV, Schulte LR, Durrett TP, Rezac ME, Vadlani PV (2016) Oleaginous yeast: a value-added platform for renewable oils. Crit Rev Biotechnol 36(5):942–955PubMedCrossRefGoogle Scholar
  84. 84.
    Garay L, Boundy-Mills K, German J (2014) Accumulation of high value lipids in single cell microorganisms: a mechanistic approach and future perspectives. J Agric Food Chem 62(13):2709–2727PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialization of algal biofuels. Bioresour Technol 102(1):26–34PubMedCrossRefGoogle Scholar
  86. 86.
    Weete JD (2012) Lipid biochemistry of fungi and other organisms. Springer Science & Business Media, BerlinGoogle Scholar
  87. 87.
    Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29(2):53–61PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147(10):2857–2864PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ratledge C (2002) Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans 30:1047–1050CrossRefGoogle Scholar
  90. 90.
    Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86(11):807–815PubMedCrossRefGoogle Scholar
  91. 91.
    Ratledge C, Wynn J (2002) The biochemistry and molecular biology of lipid accumlation in oleaginous microorganisms. Adv Appl Microbiol 51:1–44PubMedCrossRefGoogle Scholar
  92. 92.
    Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, Zhou YJ, Jin G, Ye M, Zou H (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Zhang Y, Adams IP, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153(7):2013–2025CrossRefGoogle Scholar
  94. 94.
    Rodríguez-Frómeta RA, Gutiérrez A, Torres-Martínez S, Garre V (2013) Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Appl Mol Biotechnol 97(7):3063–3072CrossRefGoogle Scholar
  95. 95.
    Schweizer E, Hofmann J (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68(3):501–517PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Lu Y-J, Zhang Y-M, Rock CO (2004) Product diversity and regulation of type II fatty acid synthases. Biochem Cell Biol 82(1):145–155PubMedCrossRefGoogle Scholar
  97. 97.
    Vieler A, Brubaker SB, Vick B, Benning C (2012) A lipid droplet protein of Nannochloropsis with functions partially analogous to plant oleosins. Plant Physiol 158(4):1562–1569PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Choudhary V, Jacquier N, Schneiter R (2011) The topology of the triacylglycerol synthesizing enzyme Lro1 indicates that neutral lipids can be produced within the luminal compartment of the endoplasmatic reticulum: Implications for the biogenesis of lipid droplets. Commun Integr Biol 4(6):781–784PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Long AP, Manneschmidt AK, VerBrugge B, Dortch MR, Minkin SC, Prater KE, Biggerstaff JP, Dunlap JR, Dalhaimer P (2012) Lipid droplet de novo formation and fission are linked to the cell cycle in fission yeast. Traffic 13(5):705–714PubMedCrossRefGoogle Scholar
  100. 100.
    Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stöveken T, Von Landenberg P (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbial 55(3):750-763CrossRefGoogle Scholar
  101. 101.
    Murphy DJ (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249(3):541–585PubMedCrossRefGoogle Scholar
  102. 102.
    Jacquemet A, Barbeau J, Lemiègre L, Benvegnu T (2009) Archaeal tetraether bipolar lipids: structures, functions and applications. Biochimie 91(6):711–717PubMedCrossRefGoogle Scholar
  103. 103.
    Legat A, Gruber C, Zangger K, Wanner G, Stan-Lotter H (2010) Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl Microbiol Biotechnol 87(3):1119–1127PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Ding Y, Yang L, Zhang S, Wang Y, Du Y, Pu J, Peng G, Chen Y, Zhang H, Yu J (2012) Identification of the major functional proteins of prokaryotic lipid droplets. J Lipid Res 53(3):399–411PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Checa A, Bedia C, Jaumot J (2015) Lipidomic data analysis: Tutorial, practical guidelines and applications. Anal Chim Acta 885:1–16PubMedCrossRefGoogle Scholar
  106. 106.
    Jurowski K, Kochan K, Walczak J, Barańska M, Piekoszewski W, Buszewski B (2017) Analytical techniques in lipidomics: state of the art. Crit Rev Anal Chem 47:418–437PubMedCrossRefGoogle Scholar
  107. 107.
    Fuchs B (2012) Analysis of phospolipids and glycolipids by thin-layer chromatography–matrix-assisted laser desorption and ionization mass spectrometry. J Chromatogr A 1259:62–73PubMedCrossRefGoogle Scholar
  108. 108.
    Li Y, Wang J, Zhan L, Wleklinski M, Wang J, Xiong C, Liu H, Zhou Y, Nie Z (2016) The bridge between thin layer chromatography-mass spectrometry and high-performance liquid chromatography-mass spectrometry :The realization of liquid thin layer chromatography-mass spectrometry. J Chromatogr A 1460:181–189PubMedCrossRefGoogle Scholar
  109. 109.
    Hsu F-F (2018) Mass spectrometry-based shotgun lipidomics – a critical review from the technical point of view. Anal Bioanal Chem 410:6387–6409PubMedCrossRefGoogle Scholar
  110. 110.
    Zheng X, Smith RD, Baker ES (2018) Recent advances in lipid separations and structural elucidation using mass spectrometry combined with ion mobility spectrometry, ion-molecule reactions and fragmentation approaches. Curr Opin Chem Biol 42:111–118PubMedCrossRefGoogle Scholar
  111. 111.
    Rabiei Z, Bigdeli MR, Rasoulian B, Ghassempour A, Mirzajani F (2012) The Neuroprotection Effect of Pretreatment with Olive Leaf Extract on Brain Lipidomics in Rat Stroke Model. Phytomedicine 19:940–946PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Dillon JT, Aponte JC, Tsai YJ, Huang Y (2012) Thin Layer Chromatography in the Separation of Unsaturated Organic Compounds Using Silver-Thiolate Chromatographic Material. J Chromatogr A 1251:240–243PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Plekhanov AY (1999) Rapid staining of lipids on thin-layer chromatograms with amido black 10B and other water-soluble stains. Anal Biochem 271(2):186–187PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Fuchs B, Suss R, Teuber K, Eibisch M, Schiller J (2011) Lipid Analysis by Thin-Layer chromatography - A Review of the Current State. J Chromatogr A 1218:2754–2774PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Domınguez A, Jarne C, Cebolla VL, Galban J, Saviron M, Orduna J, Membrado L, Lapieza M-P, Romero E, Vicente IS, de Marcos S, Garriga R (2015) A Hyphenated Technique Based on High-Performance Thin Layer Chromatography. Chromatography 2:167–187CrossRefGoogle Scholar
  116. 116.
    Tan G, Tian Y, Addy M, Cheng Y, Xie Q, Zhang B, Liu Y, Chen P, Ruan P (2017) Structural analysis of phosphatidylcholine using a thin layer chromatography-based method. Eur J Lipid Sci Technol 119:1600282. CrossRefGoogle Scholar
  117. 117.
    Zarzycki PK, MM S˛c, Zarzycka MB, Bartoszuk MA, Wodarczyk E, Baran MJ (2011) Temperature-Controlled Micro-TLC: A Versatile Green Chemistry and Fast Analytical Tool for Separation and Preliminary Screening of Steroids Fraction from Biological and Environmental Samples. J Steroid Biochem Mol Biol 127:418–427PubMedCrossRefGoogle Scholar
  118. 118.
    Kofeler HC, Fauland A, Rechberger GN, Trotzmuller M (2012) Mass Spectrometry Based Lipidomics: An Overview of Technological Platforms. Meta 2:19–38Google Scholar
  119. 119.
    Dodds ED, McCoy MR, Rea LD, Kennish JM (2005) Gas Chromatographic Quantification of Fatty Acid Methyl Esters: Flame Ionization Detection vs. Electron Impact Mass Spectrometry. Lipids 40:419–428PubMedCrossRefGoogle Scholar
  120. 120.
    Roach JA, Yurawecz MP, Kramer JK, Mossoba MM, Eulitz K, Ku Y (2000) Gas Chromatography-High Resolution Selected-Ion Mass Spectrometric Identification of Trace 21:0 and 20:2 Fatty Acids Eluting with Conjugated Linoleic Acid Isomers. Lipids 35:797–802PubMedCrossRefGoogle Scholar
  121. 121.
    Bamba T, Lee JW, Matsubara A, Fukusaki E (2012) Metabolic Profiling of Lipids by Supercritical Fluid Chromatography/Mass Spectrometry. J Chromatogr A 1250:212–219PubMedCrossRefGoogle Scholar
  122. 122.
    Pati S, Nie B, Arnold RD, Cummings BS (2016) Extraction, Chromatographic and Mass Spectrometric Methods for Lipid Analysis. Biomed Chromatogr 30:695–709PubMedCrossRefGoogle Scholar
  123. 123.
    Uchikata T, Matsubara A, Fukusaki E, Banba T (2012) High-Throughput Phospholipid Profiling System Based on Supercritical Fluid Extraction– Supercritical Fluid Chromatography/Mass Spectrometry for Dried Plasma Spot Analysis. J Chromatogr A 1250:69–75PubMedCrossRefGoogle Scholar
  124. 124.
    Lee JW, Nishiumi S, Yoshida M, Fukusaki E, Bamba T (2013) Simultaneous Profiling of Polar Lipids by Supercritical Fluid Chromatography/Tandem Mass Spectrometry with Methylation. J Chromatogr A 1279:98–107PubMedCrossRefGoogle Scholar
  125. 125.
    Gaspar A, Englmann M, Fekete A, Harir M, Schmitt-Kopplin P (2008) Trends in CE-MS 2005–2006. Electrophoresis 29:66–79PubMedCrossRefGoogle Scholar
  126. 126.
    Otarola J, Lista AG, Band BF, Garrido M (2015) Capillary electrophoresis to determine entrapment efficiency of a nanostructured lipid carrier loaded with piroxicam. J Pharm Anal 5:70–73PubMedCrossRefGoogle Scholar
  127. 127.
    Otieno AC, Mwongela SM (2008) Capillary Electrophoresis-Based Methods for the Determination of Lipids-A Review. Anal Chim Acta 624:163–174PubMedCrossRefGoogle Scholar
  128. 128.
    Xiao Y, Mei J, He X, Cheng W (2006) Fractionation and High Performance Capillary Electrophoretic Analysis of Phospholipids. Chinese J Chromatogr 24:30–34CrossRefGoogle Scholar
  129. 129.
    Wu H, Volponi JV, Oliver AE, Parikh AN, Simmons BA, Singh S (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci U S A 108:3809PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Samek O, Janas A, Pilat Z, Zemanek P, Nedbal L, Triska J, Kotas P, Trtilek M (2010) Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids In Vivo. Sensors 10:8635–8651PubMedCrossRefGoogle Scholar
  131. 131.
    Czamara K, Majzner K, Pacia Z, Kochan K, Kaczora A, Baranska M (2015) Raman spectroscopy of lipids: a review. J Raman Spectrosc 46:4–20CrossRefGoogle Scholar
  132. 132.
    Kucuk Baloglu F, Garip S, Heise S, Brockmann G, Severcan F (2015) FTIR Imaging of Structural Changes in Visceral and Subcutaneous Adiposity and Brown to White Adipocyte Trans-differentiation. Analyst 140:2205–2214PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Kochan K, Maslak E, Krafft C, Kostogrys R, Chlopicki S, Baranska M (2015) Raman Spectroscopy Analysis of Lipid Droplets Content, Distribution and Saturation Level in Non-Alcoholic Fatty Liver Disease in Mice. J Biophotonics 8:597–609PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Abramczyk H, Surmacki J, Kopec M, Olejnik AK, Lubecka-Pietruszewska K, Fabianowska-Majewska K (2015) The Role of Lipid Droplets and Adipocytes in Cancer. Raman Imaging of Cell Cultures: MCF10A, MCF7, and MDA-MB-231 Compared to Adipocytes in Cancerous Human Breast Tissue. Analyst 140:2224–2235PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Wrobel TP, Mateuszuk L, Kostogrys RB, Chlopicki S, Baranska M (2013) Quantification of Plaque Area and Characterization of Plaque Biochemical Composition with Atherosclerosis Progression in ApoE/LDLR¡/¡ mice by FT-IR Imaging. Analyst 138:6645–6652PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Quinn PJ, Rainteau D, Wolf C (2009) Lipidomics of the Red Cell in Diagnosis of Human Disorders. Methods Mol Biol 579:127–159PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Tan HH, Makino A, Sudech K, Greimel P, Kobayashi T (2012) Spectroscopic Evidence for the Unusual Stereochemical Configuration of an Endosome-Specific Lipid. Angew Chem Int Ed Engl 51:533–535PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Zhendre V, Grelard A, Garnier-Lhomme M, Buchoux S, Larijani B, Dufourc EJ (2011) Key Role of Polyphosphoinositides in Dynamics of Fusogenic Nuclear Membrane Vesicles. PLoS One 6:e23859PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Mirbahai L, Wilson M, Shaw CS, McConville C, Malcomson RD, Kauppinen RA, Peet AC (2012) Lipid Biomarkers of Glioma Cell Growth Arrest and Cell Death Detected by 1H Magic Angle Spinning MRS. NMR Biomed 25:1253–1262PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Ishida Y, Madonna AJ, Rees JC, Meetani MA, Voorhees KJ (2002) Rapid analysis of intact phospholipids from whole bacterial cells by matrix-assisted laser desorption/ionization mass spectrometry combined with on-probe sample pretreatment. Rapid Commun Mass Spectrom 16(19):1877–1882PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Waltermann M, Luftmann H, Baumeister D, Kalscheuer R, Steinbuchel A (2000) Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids. Microbiology-Uk 146:1143–1149CrossRefGoogle Scholar
  142. 142.
    Nichols PD, Guckert JB, White DC (1986) Determination of Monounsaturated Fatty-Acid Double-Bond Position and Geometry for Microbial Monocultures and Complex Consortia by Capillary GC-MS of Their Dimethyl Disulfide Adducts. J Microbiol Meth 5(1):49–55CrossRefGoogle Scholar
  143. 143.
    Sakuragi Y, Zybailov B, Shen GZ, Jones AD, Chitnis PR, van der Est A, Bittl R, Zech S, Stehlik D, Golbeck JH, Bryant DA (2002) Insertional inactivation of the menG gene, encoding 2-phytyl-1,4-naphthoquinone methyltransferase of Synechocystis sp PCC 6803, results in the incorporation of 2-phytyl-1,4-naphthoquinone into the A(1) site and alteration of the equilibrium constant between A(1) and F-x in photosystem I. Biochemistry 41(1):394–405PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Frigaard, NU, Maresca JA, Yunker CE, Jones AD, Bryant (2004). Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 186(16):5210-5220PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44(6):1071–1079PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Welti R, Shah J, Li W, Li M, Chen J, Burke JJ, Fauconnier M-L, Chapman K, Chye ML, Wang X (2007) Plant lipidomics: Discerning biological function by profiling plant complex lipids using mass spectrometry. Front Biosci 12(1):2494–2506PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Holguin FO, Schaub T (2013) Characterization of microalgal lipid feedstock by direct-infusion FT-ICR mass spectrometry. Algal Research-Biomass Biofuels and Bioproducts 2(1):43–50Google Scholar
  148. 148.
    Yokochi T, Honda D, Higashihara T, Nakahara T (1998) Optimisation of ocosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol 49:72–76CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Daniel Jones
    • 1
    • 2
  • Kyria L. Boundy-Mills
    • 3
  • G. Florin Barla
    • 4
    • 5
  • Sandeep Kumar
    • 6
  • Bryan Ubanwa
    • 7
  • Venkatesh Balan
    • 7
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUSA
  2. 2.Department of ChemistryMichigan State UniversityEast LansingUSA
  3. 3.Phaff Yeast Culture Collection, Department of Food Science and TechnologyUniversity of California, DavisDavisUSA
  4. 4.Faculty of Food EngineeringUniversity of SuceavaSuceavaRomania
  5. 5.Tyton BiosciencesDanvilleUSA
  6. 6.Department of Civil and Environmental EngineeringOld Dominion UniversityNorfolkUSA
  7. 7.Department of Engineering Technology, Biotechnology Program, College of TechnologyUniversity of HoustonHoustonUSA

Personalised recommendations