Skip to main content

Seeding Induced Pluripotent Stem Cell-Derived Neurons onto 384-Well Plates

  • Protocol
  • First Online:
Cell-Based Assays Using iPSCs for Drug Development and Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1994))

Abstract

Induced pluripotent stem cell (iPSC) derived neurons are an excellent in vitro model of neurological diseases that are often used in early stage drug discovery projects. Thus far, the use of iPSC-derived cells in small molecule drug screening has been limited, and one of the reasons for this has been the challenge of miniaturization of iPSC culture and differentiation in low volume microwell plate formats. Here we describe a method of seeding iPSC-derived neurons into 384-well plates towards the end of the differentiation procedure. This method covers coating the plates with substrates to aid attachment, dissociation of the cells into a single cell suspension, and seeding onto 384-well plates to give an even distribution of neurons. This method facilitates the use of iPSC-derived neurons for high-content imaging, whole-well assays, and small-molecule drug screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burkhardt MF, Martinez FJ, Wright S, Ramos C, Volfson D, Mason M, Garnes J, Dang V, Lievers J, Shoukat-Mumtaz U, Martinez R, Gai H, Blake R, Vaisberg E, Grskovic M, Johnson C, Irion S, Bright J, Cooper B, Nguyen L, Griswold-Prenner I, Javaherian A (2013) A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 56:355–364. https://doi.org/10.1016/j.mcn.2013.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ryan KR, Sirenko O, Parham F, Hsieh JH, Cromwell EF, Tice RR, Behl M (2016) Neurite outgrowth in human induced pluripotent stem cell-derived neurons as a high-throughput screen for developmental neurotoxicity or neurotoxicity. Neurotoxicology 53:271–281. https://doi.org/10.1016/j.neuro.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  3. Xu X, Lei Y, Luo J, Wang J, Zhang S, Yang X, Sun M, Nuwaysir E, Fan G, Zhao J, Lei L, Zhong Z (2013) Prevention of β-amyloid induced toxicity in human iPS cell-derived neurons by inhibition of Cyclin-dependent kinases and associated cell cycle events. Stem Cell Res 10:213–227. https://doi.org/10.1016/j.scr.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  4. Little D, Luft C, Mosaku O, Lorvelle M, Yao Z, Paillusson S, Kriston-Vizi J, Gandhi S, Abramov AY, Ketteler R, Devine MJ, Gissen P (2018) A single cell high content assay detects mitochondrial dysfunction in iPSC-derived neurons with mutations in SNCA. Sci Rep. https://doi.org/10.1038/s41598-018-27058-0 SREP-18-02363

  5. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnol 27:275–280. https://doi.org/10.1038/nbt.1529

    Article  CAS  Google Scholar 

  6. Kriks S, Shim J, Piao J, Ganat Y, Wakeman D, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower J, Tabar V, Studer L (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480(7378):547–551. https://doi.org/10.1038/nature10648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Y, Liu H, Sauvey C, Yao L, Zarnowska ED, Zhang S (2013) Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat Protoc 8:1670–1679. https://doi.org/10.1038/nprot.2013.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi Y, Kirwan P, Livesey F (2012) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nature Protoc 7:1836–1846. https://doi.org/10.1038/nprot.2012.116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Little .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Little, D. et al. (2019). Seeding Induced Pluripotent Stem Cell-Derived Neurons onto 384-Well Plates. In: Mandenius, CF., Ross, J. (eds) Cell-Based Assays Using iPSCs for Drug Development and Testing. Methods in Molecular Biology, vol 1994. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9477-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9477-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9476-2

  • Online ISBN: 978-1-4939-9477-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics