Skip to main content

Preparation of iPSCs for Targeted Proteomic Analysis

  • Protocol
  • First Online:
Cell-Based Assays Using iPSCs for Drug Development and Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1994))

Abstract

Induced pluripotent stem cells have great potential as a human model system in regenerative medicine, disease modeling, and drug screening. However, extensive analysis of iPSC are required before their therapeutic applications. With recent developments in mass spectrometry and proteomics, this technique can become a great alternative to traditional genomic approaches for iPSC analysis. Here, we describe preparation of iPSC for targeted proteomic analysis, and measurement of pluripotency markers allowing for classification into either pluripotent or nonpluripotent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  Google Scholar 

  2. Takahashi K, Tanabe K, Ohnuki M, et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  Google Scholar 

  3. Yu J, Hu K, Smuga-otto K, Tian S, Stewart R, Igor I, Thomson JA (2009) Human Induced Pluripotent Stem Cell Free of Vector Transgene Sequences. Science 324(5928):797–801

    Article  CAS  Google Scholar 

  4. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85(8):348–362

    Article  CAS  Google Scholar 

  5. Nishimura K, Sano M, Ohtaka M, Furuta B, Umemura Y, Nakajima Y, Ikehara Y, Kobayashi T, Segawa H, Takayasu S, Sato H, Motomura K, Uchida E, Kanayasu-Toyoda T, Asashima M, Nakauchi H, Yamaguchi T, Nakanishia M (2011) Development of defective and persistent Sendai virus vector: A unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286(6):4760–4771

    Article  Google Scholar 

  6. Hockemeyer D, Soldner F, Cook EG, Gao Q, Mitalipova M, Jaenisch R (2008) A Drug-Inducible System for Direct Reprogramming of Human Somatic Cells to Pluripotency. Cell Stem Cell 3:346–353

    Article  CAS  Google Scholar 

  7. Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A, Woltjen K, Nagy A, Wrana JL (2010) Functional genomics reveals a BMP-Driven mesenchymal-to-Epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7(1):64–77

    Article  CAS  Google Scholar 

  8. Kim D, Kim C, Moon J, Chung Y, Chang M, Han B, Ko S, Yang E, Cha KY, Lanza R, Kim K (2009) Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. Stem Cell 4(6):472–476

    Article  CAS  Google Scholar 

  9. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, Saito T, Nishimura J, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y (2011) Reprogramming of Mouse and Human Cells to Pluripotency Using Mature MicroRNAs. Stem Cell 8(6):633–638

    Article  CAS  Google Scholar 

  10. Müller F-J, Schuldt BM, Williams R, Mason D, Altun G, Papapetrou EP, Danner S, Goldmann JE, Herbst A, Schmidt NO, Aldenhoff JB, Laurent LC, Loring JF (2011) A bioinformatic assay for pluripotency in human cells. Nat Methods 8(4):315–317

    Article  Google Scholar 

  11. Tsankov AM, Akopian V, Pop R, Chetty S, Gifford CA, Daheron L, Tsankova NM, Meissner A (2015) A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells. Nat Biotechnol 33(11):1–15

    Article  CAS  Google Scholar 

  12. Picotti P, Aebersold R (2012) Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9(6):555–566

    Article  CAS  Google Scholar 

  13. Ebhardt HA, Root A, Sander C, Aebersold R (2015) Applications of targeted proteomics in systems biology and translational medicine. Proteomics 15(18):3193–3208

    Article  CAS  Google Scholar 

  14. Baud A, Wessely F, Mazzacuva F, McCormick J, Camuzeaux S, Heywood WE, Little D, Vowles J, Tuefferd M, Mosaku O, Lako M, Armstrong L, Webber C, Cader MZ, Peeters P, Gissen P, Cowley SA, Mills K (2017) A multiplex high-throughput targeted proteomic assay to identify induced pluripotent stem cells. Anal Chem 89:2440–2448

    Article  CAS  Google Scholar 

  15. Fernandes HJR, Hartfield EM, Christian HC, Emmanoulidou E, Zheng Y, Booth H, Bogetofte H, Lang C, Ryan BJ, Sardi SP, Badger J, Vowles J, Evetts S, Tofaris GK, Vekrellis K, Talbot K, Hu MT, James W, Cowley SA, Wade-Martins R (2016) ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson’s iPSC-Derived Dopamine Neurons. Stem Cell Reports 6:342–356

    Article  CAS  Google Scholar 

  16. Haenseler W, Sansom SN, Buchrieser J, Newey SE, Moore CS, Nicholls FJ, Chintawar S, Schnell C, Antel JP, Allen ND, Cader MZ, Wade-Martins R, James WS, Cowley SA (2017) A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response. Stem Cell Reports 8(6):1727–1742

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors declare no competing financial interests. The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115439, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in-kind contribution. All research at Great Ormond Street Hospital NHS Foundation Trust and UCL Great Ormond Street Institute of Child Health is made possible by the NIHR Great Ormond Street Hospital Biomedical Research Centre. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR the Department of Health, IMI JU, or EFPIA or the European Commission and are not liable for any use that may be made of the information contained therein. The authors would like to gratefully acknowledge the support of Leonard Wolfson and Peto foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Baud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Baud, A., Heywood, W.E., Little, D., Gissen, P., Mills, K. (2019). Preparation of iPSCs for Targeted Proteomic Analysis. In: Mandenius, CF., Ross, J. (eds) Cell-Based Assays Using iPSCs for Drug Development and Testing. Methods in Molecular Biology, vol 1994. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9477-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9477-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9476-2

  • Online ISBN: 978-1-4939-9477-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics