Skip to main content

Kinematic Characterization of Root Growth by Means of Stripflow

  • Protocol
  • First Online:
Book cover Plant Cell Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1992))

Abstract

Kinematic methods for studying root growth are powerful but underutilized. To carry out kinematic analysis, the Baskin laboratory, in collaboration with computer scientists, developed software called Stripflow that quantifies the velocity of motion of points in the root, a quantification that is required for subsequent kinematic analysis. The first half of this chapter overviews concepts that underlie kinematic analysis of root growth; the second half provides a step-by-step guide for using Stripflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang X, Dong G, Palaniappan K, Mi G, Baskin TI (2017) Temperature-compensated cell production rate and elongation zone length in the root of Arabidopsis thaliana. Plant Cell Environ 40:264–276

    Article  CAS  Google Scholar 

  2. Erickson RO, Sax KB (1956) Elemental growth rate of the primary root of Zea mays. Proc Am Philos Soc 100:487–498

    Google Scholar 

  3. Goodwin RH, Avers CJ (1956) Studies on roots. III. An analysis of root growth in Phleum pratense using photomicrographic records. Am J Bot 43:479–487

    Article  Google Scholar 

  4. Hejnowicz Z (1956) Growth and differentiation in the root of Phleum pretense. I. Growth distribution in the root (in Polish). Acta Soc Bot Polon 25:459–478

    Article  Google Scholar 

  5. Schnyder H, Nelson CJ, Coutts JH (1987) Assessment of spatial distribution of growth in the elongation zone of grass leaf blades. Plant Physiol 85:290–293

    Article  CAS  Google Scholar 

  6. Kalve S, Fotschki J, Beeckman T, Vissenberg K, Beemster GTS (2014) Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves. J Exp Bot 65:6385–6397

    Article  CAS  Google Scholar 

  7. Kwiatkowska D, Dumais J (2003) Growth and morphogenesis at the vegetative shoot apex of Anagallis arvensis L. J Exp Bot 54:1585–1595

    Article  CAS  Google Scholar 

  8. Maurice I, Gastal F, Durand JL (1997) Generation of form and associated mass deposition during leaf development in grasses: a kinematic approach for non-steady growth. Ann Bot 80:673–683

    Article  Google Scholar 

  9. Zheng Q, Fan X, Gong M, Sharf A, Deussen O et al (2017) 4D reconstruction of blooming flowers. Comput Graphics Forum 36:405–417

    Article  Google Scholar 

  10. Gandar PW (1983) Growth in root apices. I. The kinematic description of growth. Bot Gaz 144:1–10

    Article  Google Scholar 

  11. Silk WK (1984) Quantitative descriptions of development. Annu Rev Plant Physiol 35:479–518

    Article  Google Scholar 

  12. Silk WK, Erickson RO (1979) Kinematics of plant growth. J Theor Biol 76:481–501

    Article  CAS  Google Scholar 

  13. Gandar PW, Hall AJ (1988) Estimating position-time relationships in steady-state, one-dimensional growth zones. Planta 175:121–129

    Article  CAS  Google Scholar 

  14. Silk WK, Bogeat-Triboulot M-B (2014) Deposition rates in growing tissue: Implications for physiology, molecular biology, and response to environmental variation. Plant Soil 374:1–17

    Article  CAS  Google Scholar 

  15. Beemster GTS, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol 116:1515–1526

    Article  CAS  Google Scholar 

  16. Fiorani F, Beemster GTS (2006) Quantitative analyses of cell division in plants. Plant Mol Biol 60:963–979

    Article  CAS  Google Scholar 

  17. Gandar PW (1980) The analysis of growth and cell production in root apices. Bot Gaz 141:131–138

    Article  Google Scholar 

  18. Rymen B, Coppens F, Dhondt S, Fiorani F, Beemster GTS (2010) Kinematic analysis of cell division and expansion. In: Hennig L, Köhler C (eds) Plant developmental biology, methods in molecular biology, vol 655. Springer, Berlin, pp 203–227

    Google Scholar 

  19. Spalding EP, Miller ND (2013) Image analysis is driving a renaissance in growth measurement. Curr Opin Plant Biol 16:100–104

    Article  Google Scholar 

  20. Schmundt D, Stitt M, Jähne B, Schurr U (1998) Quantitative analysis of the local rates of growth of dicot leaves at high temporal and spatial resolution, using image sequence analysis. Plant J 16:505–514

    Article  Google Scholar 

  21. Walter A, Spies H, Terjung S, Küsters R, Kirchgeßner N et al (2002) Spatio-temporal dynamics of expansion growth in roots: automatic quantification of diurnal course and temperature response by digital image sequence processing. J Exp Bot 53:689–698

    Article  CAS  Google Scholar 

  22. Basu P, Pal A, Lynch JP, Brown KM (2007) A novel image-analysis technique for kinematic study of growth and curvature. Plant Physiol 145:305–316

    Article  CAS  Google Scholar 

  23. Bizet F, Hummel I, Bogeat-Triboulot MB (2015) Length and activity of the root apical meristem revealed in vivo by infrared imaging. J Exp Bot 66:1387–1395

    Article  CAS  Google Scholar 

  24. Wuyts N, Bengough AG, Roberts TJ, Du C, Bransby MF et al (2011) Automated motion estimation of root responses to sucrose in two Arabidopsis thaliana genotypes using confocal microscopy. Planta 234:769–784

    Article  CAS  Google Scholar 

  25. Shih HW, Miller ND, Dai C, Spalding EP, Monshausen GB (2014) The receptor-like kinase FERONIA is required for mechanical signal transduction in arabidopsis seedlings. Curr Biol 24:1887–1892

    Article  CAS  Google Scholar 

  26. van der Weele CM, Jiang HS, Palaniappan KK, Ivanov VB, Palaniappan K et al (2003) A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth. Roughly uniform elongation in the meristem and also, after an abrupt acceleration, in the elongation zone. Plant Physiol 132:1138–1148

    Article  Google Scholar 

  27. Peters WS, Baskin TI (2006) Tailor-made composite functions as tools in model choice: the case of sigmoidal vs bi-linear growth profiles. Plant Methods 2:12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias I. Baskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Baskin, T.I., Zelinsky, E. (2019). Kinematic Characterization of Root Growth by Means of Stripflow. In: Cvrčková, F., Žárský, V. (eds) Plant Cell Morphogenesis. Methods in Molecular Biology, vol 1992. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9469-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9469-4_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9468-7

  • Online ISBN: 978-1-4939-9469-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics