Advertisement

Transient Gene Expression as a Tool to Monitor and Manipulate the Levels of Acidic Phospholipids in Plant Cells

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1992)

Abstract

Anionic phospholipids represent only minor fraction of cell membranes lipids but they are critically important for many membrane-related processes, including membrane identity, charge, shape, the generation of second messengers, and the recruitment of peripheral proteins. The main anionic phospholipids of the plasma membrane are phosphoinositides phosphatidylinositol 4-phosphate (PI4P), phosphatidylinositol 4,5-bisphosphate (PI4,5P2), phosphatidylserine (PS), and phosphatidic acid (PA). Recent insights in the understanding of the nature of protein–phospholipid interactions enabled the design of genetically encoded fluorescent molecular probes that can interact with various phospholipids in a specific manner allowing their imaging in live cells. Here, we describe the use of transiently transformed plant cells to study phospholipid-dependent membrane recruitment.

Key words

Microscopy Nicotiana benthamiana Nicotiana tabacum Phosphoinositides Phospholipid-binding domains Pollen tube Transient expression 

Notes

Acknowledgments

Research in the Prague lab is supported by the Czech Science Foundation (grants no. 17-27477S, 18-18290J and 19-21758S) and by the Ministry of Education Youth and Sport of the Czech Republic (project no. NPUI LO1417). Y.J. is funded by ERC no. 3363360-APPL under FP/2007-2013, and L.C.N is funded by a fellowship from the French Ministry of Higher Education.

References

  1. 1.
    Bernardino de la Serna J, Schütz GJ, Eggeling C, Cebecauer M (2016) There is no simple model of the plasma membrane organization. Front Cell Dev Biol 4:106CrossRefGoogle Scholar
  2. 2.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731CrossRefGoogle Scholar
  3. 3.
    Nicolson GL (2014) The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta 1838:1451–1466CrossRefGoogle Scholar
  4. 4.
    Devaiah SP, Roth MR, Baughman E, Li M, Tamura P et al (2006) Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE Dα1 knockout mutant. Phytochemistry 67:1907–1924CrossRefGoogle Scholar
  5. 5.
    Mosblech A, König S, Stenzel I, Grzeganek P, Feussner I et al (2008) Phosphoinositide and inositolpolyphosphate signalling in defense responses of Arabidopsis thaliana challenged by mechanical wounding. Mol Plant 1:249–261CrossRefGoogle Scholar
  6. 6.
    Furt F, Simon-Plas F, Mongrand S (2011) Lipids of the plant plasma membrane. In: Murphy AS, Schulz B, Peer W (eds) The plant plasma membrane. Springer, Berlin Heidelberg, pp 3–30CrossRefGoogle Scholar
  7. 7.
    Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137CrossRefGoogle Scholar
  8. 8.
    Kay JG, Grinstein S (2013) Phosphatidylserine-mediated cellular signaling. In: Capelluto D (ed) Lipid-mediated protein signaling. Springer, Dordrecht, pp 177–193CrossRefGoogle Scholar
  9. 9.
    Sekereš J, Pleskot R, Pejchar P, Žárský V, Potocký M (2015) The song of lipids and proteins: dynamic lipid-protein interfaces in the regulation of plant cell polarity at different scales. J Exp Bot 66:1587–1598CrossRefGoogle Scholar
  10. 10.
    Noack LC, Jaillais Y (2017) Precision targeting by phosphoinositides: how PIs direct endomembrane trafficking in plants. Curr Opin Plant Biol 40:22–33CrossRefGoogle Scholar
  11. 11.
    Pokotylo I, Kravets V, Martinec J, Ruelland E (2018) The phosphatidic acid paradox: too many actions for one molecule class? Lessons from plants. Prog Lipid Res 71:43–53CrossRefGoogle Scholar
  12. 12.
    Tanguy E, Kassas N, Vitale N (2018) Protein–phospholipid interaction motifs: a focus on phosphatidic acid. Biomolecules 8:20CrossRefGoogle Scholar
  13. 13.
    Vermeer JEM, Munnik T (2010) Imaging lipids in living plants. In: Munnik T (ed) Lipid signaling in plants. Springer, Berlin Heidelberg, pp 185–199CrossRefGoogle Scholar
  14. 14.
    Platre MP, Jaillais Y (2016) Guidelines for the use of protein domains in acidic phospholipid imaging. In: Waugh MG (ed) Lipid signaling protocols. Springer, New York, pp 175–194CrossRefGoogle Scholar
  15. 15.
    Várnai P, Gulyás G, Tóth DJ, Sohn M, Sengupta N et al (2017) Quantifying lipid changes in various membrane compartments using lipid binding protein domains. Cell Calcium 64:72–82CrossRefGoogle Scholar
  16. 16.
    Vermeer JEM, Thole JM, Goedhart J, Nielsen E, Munnik T et al (2009) Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. Plant J 57:356–372CrossRefGoogle Scholar
  17. 17.
    Simon MLA, Platre MP, Assil S, van Wijk R, Chen WY et al (2014) A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J 77:322–337CrossRefGoogle Scholar
  18. 18.
    Simon MLA, Platre MP, Marquès-Bueno MM, Armengot L, Stanislas T et al (2016) A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants. Nature Plants 2:16089CrossRefGoogle Scholar
  19. 19.
    Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K et al (1999) Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145:317–330CrossRefGoogle Scholar
  20. 20.
    van Leeuwen W, Vermeer JEM, Gadella TWJ, Munnik T (2007) Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. Plant J 52:1014–1026CrossRefGoogle Scholar
  21. 21.
    Potocký M, Pleskot R, Pejchar P, Vitale N, Kost B et al (2014) Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. New Phytol 203:483–494CrossRefGoogle Scholar
  22. 22.
    Platre MP, Noack LC, Doumane M, Bayle V, Simon MLA et al (2018) A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes. Dev Cell 45:465–480CrossRefGoogle Scholar
  23. 23.
    Heilmann I (2016) Phosphoinositide signaling in plant development. Development 143:2044–2055CrossRefGoogle Scholar
  24. 24.
    Yao HY, Xue HW (2018) Phosphatidic acid (PA) plays key roles regulating plant development and stress responses. J Integr Plant Biol 60(9):851–863CrossRefGoogle Scholar
  25. 25.
    Idevall-Hagren O, De Camilli P (2015) Detection and manipulation of phosphoinositides. Biochim Biophys Acta 1851:736–745CrossRefGoogle Scholar
  26. 26.
    Pu M, Orr A, Redfield AG, Roberts MF (2010) Defining specific lipid binding sites for a peripheral membrane protein in situ using subtesla field-cycling NMR. J Biol Chem 285:26916–26922CrossRefGoogle Scholar
  27. 27.
    Pleskot R, Cwiklik L, Jungwirth P, Žárský V, Potocký M (2015) Membrane targeting of the yeast exocyst complex. Biochim Biophys Acta 1848:1481–1489CrossRefGoogle Scholar
  28. 28.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefGoogle Scholar
  29. 29.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  30. 30.
    Sekereš J, Pejchar P, Šantrůček J, Vukašinović N, Žárský V et al (2017) Analysis of exocyst subunit EXO70 family reveals distinct membrane polar domains in tobacco pollen tubes. Plant Physiol 173:1659–1675CrossRefGoogle Scholar
  31. 31.
    Gronnier J, Crowet JM, Habenstein B, Nasir MN, Bayle V et al (2017) Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. elife 6:e26404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, CNRS, INRALyonFrance
  2. 2.Institute of Experimental BotanyCzech Academy of SciencesPragueCzech Republic
  3. 3.Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPragueCzech Republic

Personalised recommendations