Skip to main content

Protein Acetylation in Pathogen Virulence and Host Defense: In Vitro Detection of Protein Acetylation by Radiolabeled Acetyl Coenzyme A

  • Protocol
  • First Online:
Plant Innate Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1991))

Abstract

Protein acetylation has emerged as a common modification that modulates multiple aspects of protein function, including localization, stability, and protein-protein interactions. It is increasingly evident that protein acetylation significantly impacts the outcome of host-microbe interactions. In order to characterize novel putative acetyltransferase enzymes and their substrates, we describe a simple protocol for the detection of acetyltransferase activity in vitro. Purified proteins are incubated with 14C-acetyl CoA and separated electrophoretically, and acetylated proteins are detected by phosphorimaging or autoradiography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drazic A, Myklebust LM, Ree R et al (2016) The world of protein acetylation. Biochim Biophys Acta Proteins Proteomics 1864:1372–1401

    Article  CAS  Google Scholar 

  2. Mukherjee S, Keitany G, Li Y et al (2006) Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312:1211–1214

    Article  CAS  Google Scholar 

  3. Lee J, Manning AJ, Wolfgeher D et al (2015) Acetylation of an NB-LRR plant immune-effector complex suppresses immunity. Cell Rep 13:1–13

    Article  Google Scholar 

  4. Behnia R, Panic B, Whyte JRC et al (2004) Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat Cell Biol 6:405–413

    Article  CAS  Google Scholar 

  5. Setty SRG, Strochlic TI, Tong AHY et al (2004) Golgi targeting of Arf-like GTPase Arl3p requires its Nα-acetylation and the integral membrane protein Sys1p. Nat Cell Biol 6:414–419

    Article  CAS  Google Scholar 

  6. Murthi A, Hopper AK (2005) Genome-wide screen for inner nuclear membrane protein targeting in Saccharomyces cerevisiae: roles for N-acetylation and an integral membrane protein. Genetics 170:1553–1560

    Article  CAS  Google Scholar 

  7. Scott DC, Monda JK, Bennett EJ et al (2011) N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 334:674–678

    Article  CAS  Google Scholar 

  8. Monda JK, Scott DC, Miller DJ et al (2013) Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes. Structure 21:42–53

    Article  CAS  Google Scholar 

  9. Holmes WM, Mannakee BK, Gutenkunst RN et al (2014) Loss of N-terminal acetylation suppresses a prion phenotype by modulating global protein folding. Nat Commun 5:4383

    Article  CAS  Google Scholar 

  10. Kuo HP, Lee DF, Chen CT et al (2010) ARD1 stabilization of TSC2 suppresses tumorigenesis through the mTOR signaling pathway. Sci Signal 3:ra9

    Article  Google Scholar 

  11. Varshavsky A (2011) The N-end rule pathway and regulation by proteolysis. Protein Sci 20:1298–1345

    Article  CAS  Google Scholar 

  12. Xu F, Huang Y, Li L et al (2015) Two N-terminal acetyltransferases antagonistically regulate the stability of a Nod-like receptor in Arabidopsis. Plant Cell 27:1547–1562

    Article  CAS  Google Scholar 

  13. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 315:786–794

    Article  Google Scholar 

  14. Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. EMBO Rep 3:224–229

    Article  CAS  Google Scholar 

  15. Swygert SG, Peterson CL (2014) Chromatin dynamics: interplay between remodeling enzymes and histone modifications. Biochim Biophys Acta Gene Regul Mech 1839:728–736

    Article  CAS  Google Scholar 

  16. Ye J, Ai X, Eugeni EE et al (2005) Histone H4 lysine 91 acetylation: a core domain modification associated with chromatin assembly. Mol Cell 18:123–130

    Article  CAS  Google Scholar 

  17. Glozak MA, Sengupta N, Zhang X et al (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    Article  CAS  Google Scholar 

  18. Kim SC, Sprung R, Chen Y et al (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–618

    Article  CAS  Google Scholar 

  19. Spange S, Wagner T, Heinzel T et al (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41:185–198

    Article  CAS  Google Scholar 

  20. Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulated major cellular functions. Science 325:834–840

    Article  CAS  Google Scholar 

  21. Xu J, Xu H, Liu Y et al (2015) Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process. Front Plant Sci 6:1–16

    CAS  Google Scholar 

  22. DeFraia CT, Wang Y, Yao J et al (2013) Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains. BMC Plant Biol 13:102

    Article  CAS  Google Scholar 

  23. Brosch G, Ransom R, Lechner T et al (1995) Inhibition of maize histone deacetylases by HC toxin, the host-selective toxin of Cochliobolus carbonum. Plant Cell 7:1941–1950

    Article  CAS  Google Scholar 

  24. Ransom RF, Walton JD (1997) Histone hyperacetylation in maize in response to treatment with HC-toxin or infection by the filamentous fungus Cochliobolus carbonum. Plant Physiol 115:1021–1027

    Article  CAS  Google Scholar 

  25. Kong L, Qiu X, Kang J et al (2017) A Phytophthora effector manipulates host histone acetylation and reprograms defense gene expression to promote infection. Curr Biol 27:981–991

    Article  CAS  Google Scholar 

  26. Rolando M, Sanulli S, Rusniok C et al (2013) Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication. Cell Host Microbe 13:395–405

    Article  CAS  Google Scholar 

  27. Wang X, Li D, Qu D et al (2010) Involvement of TIP60 acetyltransferase in intracellular Salmonella replication. BMC Microbiol 10:228

    Article  Google Scholar 

  28. Cheong MS, Kirik A, Kim JG et al (2014) AvrBsT acetylates Arabidopsis ACIP1, a protein that associates with microtubules and is required for immunity. PLoS Pathog 10:e1003952

    Article  Google Scholar 

  29. Schreiber KJ, Baudin M, Hassan JA et al (2016) Die another day: Molecular mechanisms of effector-triggered immunity elicited by type III secreted effector proteins. Sem Cell Dev Biol 56:124–133

    Article  CAS  Google Scholar 

  30. Lee AHY, Hurley B, Felsensteiner C et al (2012) A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion. PLoS Pathog 8:e1002523

    Article  CAS  Google Scholar 

  31. Jiang S, Yao J, Ma KW et al (2013) Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors. PLoS Pathog 9:e1003715

    Article  Google Scholar 

  32. Lewis JD, Lee AHY, Hassan JA et al (2013) The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc Natl Acad Sci U S A 110:18722–18727

    Article  CAS  Google Scholar 

  33. Tasset C, Bernoux M, Jauneau A et al (2010) Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog 6:e1001202

    Article  Google Scholar 

  34. Le Roux C, Huet G, Jauneau A et al (2015) A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161:1074–1088

    Article  Google Scholar 

  35. Sarris PF, Duxbury Z, Huh SU et al (2015) A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161:1089–1100

    Article  CAS  Google Scholar 

  36. Trosky JE, Mukherjee S, Burdette DL et al (2004) Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. J Biol Chem 279:51953–51957

    Article  CAS  Google Scholar 

  37. Trosky JE, Li Y, Mukherjee S et al (2007) VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. J Biol Chem 282:34299–34305

    Article  CAS  Google Scholar 

  38. Jones RM, Wu H, Wentworth C et al (2008) Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe 3:233–244

    Article  CAS  Google Scholar 

  39. Orth K, Xu Z, Mudgett MB et al (2000) Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290:1594–1597

    Article  CAS  Google Scholar 

  40. Paquette N, Conlon J, Sweet C et al (2012) Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc Natl Acad Sci U S A 109:12710–12715

    Article  CAS  Google Scholar 

  41. Li Y, Silva JC, Skinner ME et al (2013) Mass spectrometry-based detection of protein acetylation. Methods Mol Biol 1077:81–104

    Article  CAS  Google Scholar 

  42. Zhang K, Tian S, Fan E (2013) Protein lysine acetylation analysis: current MS-based proteomic technologies. Analyst 138:1628

    Article  CAS  Google Scholar 

  43. Manning AJ, Lee J, Wolfgeher DJ et al (2018) Simple strategies to enhance discovery of acetylation post-translational modifications by quadrupole-orbitrap LC-MS/MS. Biochim Biophys Acta Proteins Proteomics 1866:224–229

    Article  CAS  Google Scholar 

  44. Smet-Nocca C, Wieruszeski JM, Melnyk O et al (2010) NMR-based detection of acetylation sites in peptides. J Pept Sci 16:414–423

    CAS  PubMed  Google Scholar 

  45. de Marco A (2011) Strategies for boosting the accumulation of correctly folded recombinant proteins expressed in Escherichia coli. Methods Mol Biol 752:1–15

    Article  Google Scholar 

  46. Wingfield PT (2016) Overview of the purification of recombinant proteins. Curr Protoc Protein Sci 80:6.1.1–6.1.35

    Google Scholar 

  47. Sim E, Payton M, Noble M et al (2000) An update on genetic, structural and functional studies of arylamine N-acetyltransferases in eucaryotes and procaryotes. Hum Mol Genet 9:2435–2441

    Article  CAS  Google Scholar 

  48. Sandy J, Mushtaq A, Holton SJ et al (2005) Investigation of the catalytic triad of arylamine N-acetyltransferases: essential residues required for acetyl transfer to arylamines. Biochem J 390:115–123

    Article  CAS  Google Scholar 

  49. Kubiak X, De L, Sierra-Gallay IL, Chaffotte AF et al (2013) Structural and biochemical characterization of an active arylamine N-acetyltransferase possessing a non-canonical cys-his-glu catalytic triad. J Biol Chem 288:22493–22505

    Article  CAS  Google Scholar 

  50. Mittal R, Peak-Chew SY, Sade RS et al (2010) The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate. J Biol Chem 285:19927–19934

    Article  CAS  Google Scholar 

  51. Krauser JA (2013) A perspective on tritium versus carbon-14: Ensuring optimal label selection in pharmaceutical research and development. J Label Compd Radiopharm 56:441–446

    Article  CAS  Google Scholar 

  52. Voytas D, Ke N (1999) Detection and quantitation of radiolabeled proteins and DNA in gels and blots. Curr Protoc Mol Biol 48A.3:A.1–A.10

    Google Scholar 

  53. Brunelle JL, Green R (2014) Coomassie blue staining. Methods Enzymol 541:161–167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Maël Baudin, Dr. Yuan Chen, and Jana Hassan for constructive feedback on the manuscript. Research on plant immunity in the Lewis laboratory was supported by the United States Department of Agriculture-Agricultural Research Service 2030-21000-046-00D (J.D.L), and NSF IOS-1557661 (J.D.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer D. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schreiber, K.J., Lewis, J.D. (2019). Protein Acetylation in Pathogen Virulence and Host Defense: In Vitro Detection of Protein Acetylation by Radiolabeled Acetyl Coenzyme A. In: Gassmann, W. (eds) Plant Innate Immunity. Methods in Molecular Biology, vol 1991. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9458-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9458-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9457-1

  • Online ISBN: 978-1-4939-9458-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics