Skip to main content

Using Bioinformatics and Molecular Biology to Streamline Construction of Effector Libraries for Phytopathogenic Pseudomonas syringae Strains

  • Protocol
  • First Online:
Plant Innate Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1991))

Abstract

The war between plants and their pathogens is endless, with plant resistance genes offering protection against pathogens until the pathogen evolves a way to overcome this resistance. Given how quickly new pathogen strains can arise and defeat plant defenses, it is critical to more rapidly identify and examine the specific genomic characteristics new virulent strains have gained which give them the upper hand. An indispensable tool is bioinformatics. Genome sequencing has advanced rapidly in the last decade, and labs are frequently uploading high-quality genomes of various organisms, including plant pathogenic bacteria such as Pseudomonas syringae. Pseudomonas syringae strains inject several effector proteins into host cells which often overcome host defenses. Probing online genomes provides a way to quickly and accurately predict effector repertoires of Pseudomonas, enabling the cloning of complete effector libraries of newly emerged strains. Here, we describe detailed protocols to rapidly clone bioinformatically predicted P. syringae effectors for various screening applications.

Jay Jayaraman and Morgan K. Halane are co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329. https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  2. Templeton MD, Warren BA, Andersen MT et al (2015) Complete DNA sequence of pseudomonas syringae pv. actinidiae, the causal agent of Kiwifruit canker disease. Genome Announc 3(5):e01054. https://doi.org/10.1128/genomeA.01054-15

    Article  PubMed  PubMed Central  Google Scholar 

  3. McCann HC, Rikkerink EH, Bertels F et al (2013) Genomic analysis of the Kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog 9(7):e1003503. https://doi.org/10.1371/journal.ppat.1003503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choi S, Jayaraman J, Segonzac C et al (2017) Pseudomonas syringae pv. actinidiae type III effectors localized at multiple cellular compartments activate or suppress innate immune responses in nicotiana benthamiana. Front Plant Sci 8:2157. https://doi.org/10.3389/fpls.2017.02157

    Article  PubMed  PubMed Central  Google Scholar 

  5. Engler C, Youles M, Gruetzner R et al (2014) A golden gate modular cloning toolbox for plants. ACS Synth Biol 3(11):839–843. https://doi.org/10.1021/sb4001504

    Article  CAS  PubMed  Google Scholar 

  6. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  7. Lindeberg M, Stavrinides J, Chang JH et al (2005) Proposed guidelines for a unified nomenclature and phylogenetic analysis of type III Hop effector proteins in the plant pathogen Pseudomonas syringae. Mol Plant-Microbe Interact 18(4):275–282. https://doi.org/10.1094/MPMI-18-0275

    Article  CAS  PubMed  Google Scholar 

  8. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11):e3647. https://doi.org/10.1371/journal.pone.0003647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thomas WJ, Thireault CA, Kimbrel JA et al (2009) Recombineering and stable integration of the Pseudomonas syringae pv. syringae 61 hrp/hrc cluster into the genome of the soil bacterium Pseudomonas fluorescens Pf0-1. Plant J 60(5):919–928. https://doi.org/10.1111/j.1365-313X.2009.03998.x

    Article  CAS  PubMed  Google Scholar 

  11. Jayaraman J, Choi S., Prokchorchik M, Choi DS, Spiandore A, Rikkerink EH, Templeton MD, Segonzac C, Sohn KH (2017) A bacterial acetyltransferase triggers immunity in Arabidopsis thaliana independent of hypersensitive response. Sci Rep 7:3557. https://doi.org/10.1111/j.1365-313X.2009.03998.x

    Article  CAS  PubMed  Google Scholar 

  12. Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 6(2):e16765. https://doi.org/10.1371/journal.pone.0016765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Segonzac C, Newman TE, Choi S, Jayaraman J, Choi DS, Jung, GY, Cho H, Lee YK, Sohn KH (2017) A conserved EAR motif is required for avirulence and stability of the Ralstonia solanacearum effector PopP2 in planta. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01330

  14. Baltrus DA, Nishimura MT, Romanchuk A et al (2011) Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog 7(7):e1002132. https://doi.org/10.1371/journal.ppat.1002132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hulin MT, Armitage AD, Vicente JG et al (2018) Comparative genomics of Pseudomonas syringae reveals convergent gene gain and loss associated with specialization onto cherry (Prunus avium). New Phytol 219(2):672–696. https://doi.org/10.1111/nph.15182

    Article  CAS  PubMed  Google Scholar 

  16. Vaghchhipawala Z, Rojas CM, Senthil-Kumar M et al (2011) Agroinoculation and agroinfiltration: simple tools for complex gene function analyses. Methods Mol Biol 678:65–76. https://doi.org/10.1007/978-1-60761-682-5_6

    Article  CAS  PubMed  Google Scholar 

  17. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  18. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340(6230):245–246. https://doi.org/10.1038/340245a0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03934707), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kee Hoon Sohn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jayaraman, J., Halane, M.K., Choi, S., McCann, H.C., Sohn, K.H. (2019). Using Bioinformatics and Molecular Biology to Streamline Construction of Effector Libraries for Phytopathogenic Pseudomonas syringae Strains. In: Gassmann, W. (eds) Plant Innate Immunity. Methods in Molecular Biology, vol 1991. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9458-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9458-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9457-1

  • Online ISBN: 978-1-4939-9458-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics