Skip to main content

Data-Driven Flow Cytometry Analysis

  • Protocol
  • First Online:
Mass Cytometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1989))

Abstract

The emergence of flow and mass cytometry technologies capable of generating 40-dimensional data has spurred research into automated methodologies that address bottlenecks across the entire analysis process from quality checking, data transformation, and cell population identification, to biomarker identification and visualizations. We review these approaches in the context of the stepwise progression through the different steps, including normalization, automated gating, outlier detection, and graphical presentation of results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kvistborg P, Gouttefangeas C, Aghaeepour N et al (2015) Thinking outside the gate: single-cell assessments in multiple dimensions. Immunity 42(4):591–592. https://doi.org/10.1016/j.immuni.2015.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hahne F, LeMeur N, Brinkman RR et al (2009) flowCore: a Bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10:106. https://doi.org/10.1186/1471-2105-10-106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Robinson JP, Rajwa B, Patsekin V et al (2012) Computational analysis of high-throughput flow cytometry data. Expert Opin Drug Discov 7(8):679–693. https://doi.org/10.1517/17460441.2012.693475

    Article  PubMed  PubMed Central  Google Scholar 

  4. Finak G, Jiang W, Pardo J et al (2012) QUAliFiER: an automated pipeline for quality assessment of gated flow cytometry data. BMC Bioinformatics 13:252. https://doi.org/10.1186/1471-2105-13-252

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gentleman R, Hahne F, Kettman J et al. (2017) flowQ: quality control for flow cytometry. R package version 1.38

    Google Scholar 

  6. Spidlen J, El Khettabi F, Moore W et al. (2017) flowQB: automated quadratic characterization of flow cytometry instrument sensitivity: Q, B and CV instrinsic calculations. R package version 2.6.0. https://www.bioconductor.org/packages/release/bioc/html/flowQB.html

  7. O’Neill K, Aghaeepour N, Spidlen J et al (2013) Flow cytometry bioinformatics. PLoS Comput Biol 9(12):e1003365. https://doi.org/10.1371/journal.pcbi.1003365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hahne F, Khodabakhshi AH, Bashashati A et al (2010) Per-channel basis normalization methods for flow cytometry data. Cytometry A 77(2):121–131. https://doi.org/10.1002/cyto.a.20823

    Article  PubMed  PubMed Central  Google Scholar 

  9. Finak G, Jiang W, Krouse K et al (2014) High-throughput flow cytometry data normalization for clinical trials. Cytometry A 85(3):277–286. https://doi.org/10.1002/cyto.a.22433

    Article  PubMed  Google Scholar 

  10. Li H, Shaham U, Stanton KP et al (2017) Gating mass cytometry data by deep learning. Bioinformatics 33(21):3423–3430. https://doi.org/10.1093/bioinformatics/btx448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maecker HT, Rinfret A, D’Souza P et al (2005) Standardization of cytokine flow cytometry assays. BMC Immunol 6:13. https://doi.org/10.1186/1471-2172-6-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McNeil LK, Price L, Britten CM et al (2013) A harmonized approach to intracellular cytokine staining gating: results from an international multiconsortia proficiency panel conducted by the cancer immunotherapy consortium (CIC/CRI). Cytometry A 83(8):728–738. https://doi.org/10.1002/cyto.a.22319

    Article  PubMed  PubMed Central  Google Scholar 

  13. Verschoor CP, Lelic A, Bramson JL et al (2015) An introduction to automated Flow cytometry gating tools and their implementation. Front Immunol 6:380. https://doi.org/10.3389/fimmu.2015.00380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rebhahn JA, Roumanes DR, Qi Y et al (2016) Competitive SWIFT cluster templates enhance detection of aging changes. Cytometry A 89(1):59–70. https://doi.org/10.1002/cyto.a.22740

    Article  PubMed  Google Scholar 

  15. Aghaeepour N, Finak G, Flow CAPC et al (2013) Critical assessment of automated flow cytometry data analysis techniques. Nat Methods 10(3):228–238. https://doi.org/10.1038/nmeth.2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Malek M, Taghiyar MJ, Chong L et al (2015) flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics 31(4):606–607. https://doi.org/10.1093/bioinformatics/btu677

    Article  CAS  PubMed  Google Scholar 

  17. Finak G, Frelinger J, Jiang W et al (2014) OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput Biol 10(8):e1003806. https://doi.org/10.1371/journal.pcbi.1003806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aghaeepour N, Chattopadhyay P, Chikina M et al (2016) A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes. Cytometry A 89(1):16–21. https://doi.org/10.1002/cyto.a.22732

    Article  CAS  PubMed  Google Scholar 

  19. Finak G, Langweiler M, Jaimes M et al (2016) Standardizing flow cytometry Immunophenotyping analysis from the human Immunophenotyping consortium. Sci Rep 6:20686. https://doi.org/10.1038/srep20686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weber LM, Robinson MD (2016) Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 89(12):1084–1096. https://doi.org/10.1002/cyto.a.23030

    Article  CAS  PubMed  Google Scholar 

  21. Rogers WT, Holyst HA (2009) FlowFP: a bioconductor package for fingerprinting flow cytometric data. Adv Bioinforma 2009:193947. https://doi.org/10.1155/2009/193947

    Article  Google Scholar 

  22. Aghaeepour N, O’Neill K, Jalali A (2014) flowType: phenotyping Flow cytometry assays. R package version 2.14.0

    Google Scholar 

  23. Van Gassen S, Vens C, Dhaene T et al (2016) FloReMi: flow density survival regression using minimal feature redundancy. Cytometry A 89(1):22–29. https://doi.org/10.1002/cyto.a.22734

    Article  PubMed  Google Scholar 

  24. Anchang B, Hart TD, Bendall SC et al (2016) Visualization and cellular hierarchy inference of single-cell data using SPADE. Nat Protoc 11(7):1264–1279. https://doi.org/10.1038/nprot.2016.066

    Article  CAS  PubMed  Google Scholar 

  25. van der Maaten LJP, Hinton GE (2008) Visualizing high-dimensional data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  26. Bruggner RV, Bodenmiller B, Dill DL et al (2014) Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A 111(26):E2770–E2777. https://doi.org/10.1073/pnas.1408792111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aghaeepour N, Jalali A, O’Neill K et al (2012) RchyOptimyx: cellular hierarchy optimization for flow cytometry. Cytometry A 81(12):1022–1030. https://doi.org/10.1002/cyto.a.22209

    Article  PubMed  PubMed Central  Google Scholar 

  28. O’Neill K, Jalali A, Aghaeepour N et al (2014) Enhanced flowType/RchyOptimyx: a BioConductor pipeline for discovery in high-dimensional cytometry data. Bioinformatics 30(9):1329–1330. https://doi.org/10.1093/bioinformatics/btt770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bendall SC, Simonds EF, Qiu P et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696. https://doi.org/10.1126/science.1198704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qiu P, Simonds EF, Bendall SC et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29(10):886–891. https://doi.org/10.1038/nbt.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee JA, Spidlen J, Boyce K et al (2008) MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73(10):926–930. https://doi.org/10.1002/cyto.a.20623

    Article  PubMed  PubMed Central  Google Scholar 

  32. Courtot M, Meskas J, Diehl AD et al (2015) flowCL: ontology-based cell population labelling in flow cytometry. Bioinformatics 31(8):1337–1339. https://doi.org/10.1093/bioinformatics/btu807

    Article  PubMed  Google Scholar 

  33. R Programming. https://www.coursera.org/learn/r-programming. Accessed 19 Dec 2017

  34. Statistics and R. https://www.edx.org/course/statistics-r-harvardx-ph525-1x-0. Accessed 19 Dec 2017

Download references

Acknowledgments

This work was supported by GenomeCanada (252FLO Brinkman), NSERC, GenomeBC, and NIH (1 R01 GM118417-01A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan R. Brinkman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, S., Brinkman, R.R. (2019). Data-Driven Flow Cytometry Analysis. In: McGuire, H., Ashhurst, T. (eds) Mass Cytometry. Methods in Molecular Biology, vol 1989. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9454-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9454-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9453-3

  • Online ISBN: 978-1-4939-9454-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics