Skip to main content
Book cover

TRP Channels pp 125–141Cite as

Patch-Clamp Combined with Fast Temperature Jumps to Study Thermal TRP Channels

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1987))

Abstract

Patch-clamp recording combined with biophysical modeling and mutagenic perturbations provides an effective means to study structural functions of ion channels. The methodology has been successful for studying ligand- or voltage-gated channels and brought about much of the knowledge we know today on how ligand or voltage gates an ion channel. The approach, when applied to thermal channels, however, has faced unique challenges. For one problem, thermal channels can operate at high temperatures, and for these channels, prolonged temperature stimulation incurs excessive thermal stress to destabilize patches. For another problem, conventional temperature controls are slow and limit the attainment of high resolution data such as time-resolved activations of thermal channels. Due to these issues, thermal channels have been less accessible to biophysical studies at mechanistic levels. In this chapter we address the problems and demonstrate fast temperature controls enabling recording of time-resolved responses of thermal channels at high temperatures.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2(4):1313–1323

    Article  CAS  PubMed  Google Scholar 

  2. Montell C, Birnbaumer L, Flockerzi V et al (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9(2):229–231

    Article  CAS  PubMed  Google Scholar 

  3. Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12(3):218. https://doi.org/10.1186/gb-2011-12-3-218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Basbaum AI, Bautista DM, Scherrer G et al (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clapham DE (2003) TRP channels as cellular sensors. Nature 426(6966):517–524

    Article  CAS  PubMed  Google Scholar 

  6. Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82(2):429–472

    Article  CAS  PubMed  Google Scholar 

  7. Gees M, Owsianik G, Nilius B et al (2012) TRP channels. Compr Physiol 2(1):563–608. https://doi.org/10.1002/cphy.c110026

    Article  PubMed  Google Scholar 

  8. Benham CD, Gunthorpe MJ, Davis JB (2003) TRPV channels as temperature sensors. Cell Calcium 33(5–6):479–487

    Article  CAS  PubMed  Google Scholar 

  9. Dhaka A, Viswanath V, Patapoutian A (2006) Trp ion channels and temperature sensation. Annu Rev Neurosci 29:135–161

    Article  CAS  PubMed  Google Scholar 

  10. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  11. Caterina MJ, Rosen TA, Tominaga M et al (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398(6726):436–441

    Article  CAS  PubMed  Google Scholar 

  12. Peier AM, Reeve AJ, Andersson DA et al (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296(5575):2046–2049

    Article  CAS  PubMed  Google Scholar 

  13. Smith GD, Gunthorpe J, Kelsell RE et al (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418(6894):186–190

    Article  CAS  PubMed  Google Scholar 

  14. Xu HX, Ramsey IS, Kotecha SA et al (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418(6894):181–186

    Article  CAS  PubMed  Google Scholar 

  15. Guler AD, Lee H, Iida T et al (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22(15):6408–6414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watanabe H, Vriens J, Suh SH et al (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277(49):47044–47051

    Article  CAS  PubMed  Google Scholar 

  17. Togashi K, Hara Y, Tominaga T et al (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25(9):1804–1815. https://doi.org/10.1038/sj.emboj.7601083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vriens J, Owsianik G, Hofmann T et al (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70(3):482–494. https://doi.org/10.1016/j.neuron.2011.02.051

    Article  CAS  PubMed  Google Scholar 

  19. Talavera K, Yasumatsu K, Voets T et al (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438(7070):1022–1025. https://doi.org/10.1038/nature04248

    Article  CAS  PubMed  Google Scholar 

  20. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416(6876):52–58

    Article  CAS  PubMed  Google Scholar 

  21. Peier AM, Moqrich A, Hergarden AC et al (2002) A TRP channel that senses cold stimuli and menthol. Cell 108(5):705–715

    Article  CAS  PubMed  Google Scholar 

  22. Bandell M, Story GM, Hwang SW et al (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41(6):849–857

    Article  CAS  PubMed  Google Scholar 

  23. Zimmermann K, Lennerz JK, Hein A et al (2011) Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc Natl Acad Sci U S A 108(44):18114–18119. https://doi.org/10.1073/pnas.1115387108

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dhaka A, Murray AN, Mathur J et al (2007) TRPM8 is required for cold sensation in mice. Neuron 54(3):371–378

    Article  CAS  PubMed  Google Scholar 

  25. Tominaga M, Caterina MJ, Malmberg AB et al (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21(3):531–543

    Article  CAS  PubMed  Google Scholar 

  26. Bautista DM, Siemens J, Glazer JM et al (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448(7150):204–208

    Article  CAS  PubMed  Google Scholar 

  27. Caterina MJ, Leffler A, Malmberg AB et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464):306–313

    Article  CAS  PubMed  Google Scholar 

  28. Davis J, Gray J, Gunthorpe M et al (2000) Abolition of hyperalgesia, but not algesia, in mice lacking VR1. Eur J Neurosci 12:171–171

    Article  Google Scholar 

  29. Moqrich A, Hwang SW, Earley TJ et al (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307(5714):1468–1472

    Article  CAS  PubMed  Google Scholar 

  30. Colburn RW, Lubin ML, Stone DJ et al (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54(3):379–386

    Article  CAS  PubMed  Google Scholar 

  31. Baldwin RL (1986) Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci U S A 83(21):8069–8072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clapham DE, Miller C (2011) A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc Natl Acad Sci USA 108(49):19492–19497. https://doi.org/10.1073/pnas.1117485108

    Article  PubMed  PubMed Central  Google Scholar 

  33. DeCoursey TE, Cherny VV (1998) Temperature dependence of voltage-gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phagocytes. J Gen Physiol 112(4):503–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  35. Leffler A, Linte RM, Nau C et al (2007) A high-threshold heat-activated channel in cultured rat dorsal root ganglion neurons resembles TRPV2 and is blocked by gadolinium. Eur J Neurosci 26(1):12–22. https://doi.org/10.1111/j.1460-9568.2007.05643.x

    Article  PubMed  Google Scholar 

  36. Yao J, Liu B, Qin F (2009) Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies. Biophys J 96(9):3611–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yao J, Liu BL, Qin F (2010) Kinetic and energetic analysis of thermally activated TRPV1 channels. Biophys J 99(6):1743–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yao J, Liu B, Qin F (2011) Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc Natl Acad Sci USA 108:11109–11114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu B, Qin F (2017) Single-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3. Proc Natl Acad Sci U S A 114(7):1589–1594. https://doi.org/10.1073/pnas.1615304114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liao M, Cao E, Julius D et al (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504(7478):107–112. https://doi.org/10.1038/nature12822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao Y, Cao E, Julius D et al (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534(7607):347–351. https://doi.org/10.1038/nature17964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zubcevic L, Herzik MA Jr, Chung BC et al (2016) Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol 23(2):180–186. https://doi.org/10.1038/nsmb.3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huynh KW, Cohen MR, Jiang J et al (2016) Structure of the full-length TRPV2 channel by cryo-EM. Nat Commun 7:11130. https://doi.org/10.1038/ncomms11130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Treede RD, Meyer RA, Raja SN et al (1995) Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. J Physiol 483(Pt 3):747–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shimosato G, Amaya F, Ueda M et al (2005) Peripheral inflammation induces up-regulation of TRPV2 expression in rat DRG. Pain 119(1–3):225–232. https://doi.org/10.1016/j.pain.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  46. Liu B, Hui K, Qin F (2003) Thermodynamics of heat activation of single capsaicin ion channels VR1. Biophys J 85(5):2988–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brauchi S, Orio P, Latorre R (2004) Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci USA 101(43):15494–15499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Voets T, Droogmans G, Wissenbach U et al (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430(7001):748–754

    Article  CAS  PubMed  Google Scholar 

  49. Zhu MX (2007) Understanding the role of voltage gating of polymodal TRP channels. J Physiol 585(Pt 2):321–322. https://doi.org/10.1113/jphysiol.2007.147082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu BL, Yao J, Qin F (2011) Hysteresis of gating underlines sensitization of TRPV3 channels. J Gen Physiol 138(5):509–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu BY, Qin F (2016) Use dependence of heat sensitivity of Vanilloid receptor TRPV2. Biophys J 110(7):1523–1537. https://doi.org/10.1016/j.bpj.2016.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meyer RA, Campbell JN (1981) Myelinated nociceptive afferents account for the hyperalgesia that follows a burn to the hand. Science 213(4515):1527–1529

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, B., Qin, F. (2019). Patch-Clamp Combined with Fast Temperature Jumps to Study Thermal TRP Channels. In: Ferrer-Montiel, A., Hucho, T. (eds) TRP Channels. Methods in Molecular Biology, vol 1987. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9446-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9446-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9445-8

  • Online ISBN: 978-1-4939-9446-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics