Assessment of SIRT2 Inhibitors in Mouse Models of Cancer

  • Yashira L. Negrón Abril
  • Irma Fernández
  • Robert S. WeissEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1983)


New therapeutics directed against established and novel molecular targets are urgently needed to intervene against cancer. Recently, it was reported that several members of the sirtuin family (SIRT1–7), the mammalian orthologs of the silent information regulator 2 (Sir2) protein in Saccharomyces cerevisiae, play important roles in carcinogenesis. Although SIRT2 has been attributed both tumor-promoting and tumor-suppressing activities in different contexts, selective SIRT2 inhibition with a small molecule mechanism-based inhibitor known as Thiomyristoyl lysine (TM) repressed the growth of breast cancer cell lines. In light of the anticancer effect of SIRT2 inhibition in cell culture, it was critical to assess the efficacy of TM as a potential anticancer therapy in vivo. This was accomplished by testing the SIRT2 inhibitor in genetically engineered and xenotransplantation mouse models of breast cancer, using the procedures detailed in this chapter.


Sirtuins SIRT2 Genetically engineered mouse model Xenograft Breast cancer Small molecule inhibitor 



This work was supported in part by an intercampus seed grant from Cornell University and NIH R01 grant CA163255. Y.L.N.A. and I.F. were supported by NIH grants T32 GM008500 and T32 GM007273, respectively. The authors thank Dr. Elizabeth Moore for comments on the manuscript, and Dr. Hening Lin and members of his laboratory for helpful discussions and providing TM compound.


  1. 1.
    National Cancer Institute (2018) Cancer statistics. Accessed 27 Mar 2018
  2. 2.
    Arif M, Senapati P, Shandilya J, Kundu TK (2010) Protein lysine acetylation in cellular function and its role in cancer manifestation. Biochim Biophys Acta 1799(10–12):702–716. Scholar
  3. 3.
    Krueger KE, Srivastava S (2006) Posttranslational protein modifications: current implications for cancer detection, prevention, and therapeutics. Mol Cell Proteomics 5(10):1799–1810. Scholar
  4. 4.
    Chalkiadaki A, Guarente L (2015) The multifaceted functions of sirtuins in cancer. Nat Rev Cancer 15(10):608–624. Scholar
  5. 5.
    Chang HC, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25(3):138–145. Scholar
  6. 6.
    Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295. Scholar
  7. 7.
    Lavu S, Boss O, Elliott PJ, Lambert PD (2008) Sirtuins--novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov 7(10):841–853. Scholar
  8. 8.
    Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435. Scholar
  9. 9.
    Imai S, Guarente L (2010) Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 31(5):212–220. Scholar
  10. 10.
    Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238. Scholar
  11. 11.
    Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795–800. Scholar
  12. 12.
    de Oliveira RM, Sarkander J, Kazantsev AG, Outeiro TF (2012) SIRT2 as a therapeutic target for age-related disorders. Front Pharmacol 3:82. Scholar
  13. 13.
    Park S-H, Zhu Y, Ozden O, Kim H-S, Jiang H, Deng C-X, Gius D, Vassilopoulos A (2012) SIRT2 is a tumor suppressor that connects aging, acetylome, cell cycle signaling, and carcinogenesis. Transl Cancer Res 1(1):15–21PubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhou W, Ni TK, Wronski A, Glass B, Skibinski A, Beck A, Kuperwasser C (2016) The SIRT2 deacetylase stabilizes slug to control malignancy of basal-like breast cancer. Cell Rep 17(5):1302–1317. Scholar
  15. 15.
    Serrano L, Martinez-Redondo P, Marazuela-Duque A, Vazquez BN, Dooley SJ, Voigt P, Beck DB, Kane-Goldsmith N, Tong Q, Rabanal RM, Fondevila D, Munoz P, Kruger M, Tischfield JA, Vaquero A (2013) The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev 27(6):639–653. Scholar
  16. 16.
    McGlynn LM, Zino S, MacDonald AI, Curle J, Reilly JE, Mohammed ZM, McMillan DC, Mallon E, Payne AP, Edwards J, Shiels PG (2014) SIRT2: tumour suppressor or tumour promoter in operable breast cancer? Eur J Cancer 50(2):290–301. Scholar
  17. 17.
    Jing H, Hu J, He B, Negron Abril YL, Stupinski J, Weiser K, Carbonaro M, Chiang YL, Southard T, Giannakakou P, Weiss RS, Lin H (2016) A SIRT2-selective inhibitor promotes c-Myc oncoprotein degradation and exhibits broad anticancer activity. Cancer Cell 29(3):297–310. Scholar
  18. 18.
    Chen J, Chan AW, To KF, Chen W, Zhang Z, Ren J, Song C, Cheung YS, Lai PB, Cheng SH, Ng MH, Huang A, Ko BC (2013) SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-3beta/beta-catenin signaling. Hepatology 57(6):2287–2298. Scholar
  19. 19.
    Cheon MG, Kim W, Choi M, Kim JE (2015) AK-1, a specific SIRT2 inhibitor, induces cell cycle arrest by downregulating Snail in HCT116 human colon carcinoma cells. Cancer Lett 356(2 Pt B):637–645. Scholar
  20. 20.
    He B, Hu J, Zhang X, Lin H (2014) Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors. Org Biomol Chem 12(38):7498–7502. Scholar
  21. 21.
    Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle S, Kollipara R, Depinho RA, Gu Y, Simon JA, Bedalov A (2006) Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res 66(8):4368–4377. Scholar
  22. 22.
    Hoffmann G, Breitenbucher F, Schuler M, Ehrenhofer-Murray AE (2014) A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer. J Biol Chem 289(8):5208–5216. Scholar
  23. 23.
    Kim WJ, Lee JW, Quan C, Youn HJ, Kim HM, Bae SC (2011) Nicotinamide inhibits growth of carcinogen induced mouse bladder tumor and human bladder tumor xenograft through up-regulation of RUNX3 and p300. J Urol 185(6):2366–2375. Scholar
  24. 24.
    Mahajan SS, Scian M, Sripathy S, Posakony J, Lao U, Loe TK, Leko V, Thalhofer A, Schuler AD, Bedalov A, Simon JA (2014) Development of pyrazolone and isoxazol-5-one cambinol analogues as sirtuin inhibitors. J Med Chem 57(8):3283–3294. Scholar
  25. 25.
    McCarthy AR, Sachweh MC, Higgins M, Campbell J, Drummond CJ, van Leeuwen IM, Pirrie L, Ladds MJ, Westwood NJ, Lain S (2013) Tenovin-D3, a novel small-molecule inhibitor of sirtuin SirT2, increases p21 (CDKN1A) expression in a p53-independent manner. Mol Cancer Ther 12(4):352–360. Scholar
  26. 26.
    Neugebauer RC, Uchiechowska U, Meier R, Hruby H, Valkov V, Verdin E, Sippl W, Jung M (2008) Structure-activity studies on splitomicin derivatives as sirtuin inhibitors and computational prediction of binding mode. J Med Chem 51(5):1203–1213. Scholar
  27. 27.
    Rotili D, Tarantino D, Nebbioso A, Paolini C, Huidobro C, Lara E, Mellini P, Lenoci A, Pezzi R, Botta G, Lahtela-Kakkonen M, Poso A, Steinkuhler C, Gallinari P, De Maria R, Fraga M, Esteller M, Altucci L, Mai A (2012) Discovery of salermide-related sirtuin inhibitors: binding mode studies and antiproliferative effects in cancer cells including cancer stem cells. J Med Chem 55(24):10937–10947. Scholar
  28. 28.
    Zhang Y, Au Q, Zhang M, Barber JR, Ng SC, Zhang B (2009) Identification of a small molecule SIRT2 inhibitor with selective tumor cytotoxicity. Biochem Biophys Res Commun 386(4):729–733. Scholar
  29. 29.
    Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334(6057):806–809. Scholar
  30. 30.
    Feldman JL, Baeza J, Denu JM (2013) Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 288(43):31350–31356. Scholar
  31. 31.
    Zhu AY, Zhou Y, Khan S, Deitsch KW, Hao Q, Lin H (2012) Plasmodium falciparum Sir2A preferentially hydrolyzes medium and long chain fatty acyl lysine. ACS Chem Biol 7(1):155–159. Scholar
  32. 32.
    Bheda P, Jing H, Wolberger C, Lin H (2016) The substrate specificity of sirtuins. Annu Rev Biochem 85:405–429. Scholar
  33. 33.
    Hawse WF, Hoff KG, Fatkins D, Daines A, Zubkova OV, Schramm VL, Zheng W, Wolberger C (2008) Structural insights into intermediate steps in the Sir2 deacetylation reaction. Structure 16(9):1368–1377. Scholar
  34. 34.
    Cen Y, Falco JN, Xu P, Youn DY, Sauve AA (2011) Mechanism-based affinity capture of sirtuins. Org Biomol Chem 9(4):987–993. Scholar
  35. 35.
    Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12(3):954–961CrossRefGoogle Scholar
  36. 36.
    Kim WY, Sharpless NE (2012) Drug efficacy testing in mice. Curr Top Microbiol Immunol 355:19–38. Scholar
  37. 37.
    Institute for Laboratory Animal Research (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies Press, Washington, DCGoogle Scholar
  38. 38.
    Faustino-Rocha A, Oliveira PA, Pinho-Oliveira J, Teixeira-Guedes C, Soares-Maia R, da Costa RG, Colaco B, Pires MJ, Colaco J, Ferreira R, Ginja M (2013) Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab Anim 42(6):217–224. Scholar
  39. 39.
    Earnest E, Ajaghaku D (2014) Guidelines on dosage calculation and stock solution preparation in experimental animals’ studies. J Nat Sci Res 4(18):100–106Google Scholar
  40. 40.
    Hollingshead MG (2008) Antitumor efficacy testing in rodents. J Natl Cancer Inst 100(21):1500–1510. Scholar
  41. 41.
    Machholz E, Mulder G, Ruiz C, Corning BF, Pritchett-Corning KR (2012) Manual restraint and common compound administration routes in mice and rats. J Vis Exp (67):e2771.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yashira L. Negrón Abril
    • 1
  • Irma Fernández
    • 1
  • Robert S. Weiss
    • 1
    Email author
  1. 1.Department of Biomedical SciencesCornell UniversityIthacaUSA

Personalised recommendations