Advertisement

Site-Specific Lysine Acetylation Stoichiometry Across Subcellular Compartments

  • Anastasia J. Lindahl
  • Alexis J. Lawton
  • Josue Baeza
  • James A. Dowell
  • John M. DenuEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1983)

Abstract

Posttranslational modifications of proteins control many complex biological processes, including genome expression, chromatin dynamics, metabolism, and cell division through a language of chemical modifications. Improvements in mass spectrometry-based proteomics have demonstrated protein acetylation is a widespread and dynamic modification in the cell; however, many questions remain on the regulation and downstream effects, and an assessment of the overall acetylation stoichiometry is needed. In this chapter, we describe the determination of acetylation stoichiometry using data-independent acquisition mass spectrometry to expand the number of acetylation sites quantified. However, the increased depth of data-independent acquisition is limited by the spectral library used to deconvolute fragmentation spectra. We describe a powerful approach of subcellular fractionation in conjunction with offline prefractionation to increase the depth of the spectral library. This deep interrogation of subcellular compartments provides essential insights into the compartment-specific regulation and downstream functions of protein acetylation.

Keywords

Protein acetylation Acetylation Mitochondria Chromatin Stoichiometry Posttranslational modification Mass spectrometry Proteomics 

Notes

Acknowledgments

We would like to thank Ian Lienert, Tejas Gandhi, Oliver Bernhardt, Lukas Reiter from Biognosys for the development of the software to generate the in silico labeled spectral library and analyze DIA MS data. This work was supported by GM65386 to J.M.D. and by NIH National Research Service Award T32 GM007215 to (A.L. and J.B.)

References

  1. 1.
    Olsen JV, Mann M (2013) Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 12:3444–3452PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Olsen JV, Vermeulen M, Santamaria A et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3:ra3PubMedCrossRefGoogle Scholar
  3. 3.
    Wu R, Haas W, Dephoure N et al (2011) A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat Methods 8:677–683PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kim SC, Sprung R, Chen Y et al (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–618CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yu BJ, Kim JA, Moon JH et al (2008) The diversity of lysine-acetylated proteins in Escherichia coli. J Microbiol Biotechnol 18:1529–1536PubMedGoogle Scholar
  6. 6.
    Zhang J, Sprung R, Pei J et al (2009) Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics 8:215–225PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Schwer B, Eckersdorff M, Li Y et al (2009) Calorie restriction alters mitochondrial protein acetylation. Aging Cell 8:604–606PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840CrossRefGoogle Scholar
  9. 9.
    Wang Q, Zhang Y, Yang C et al (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327:1004–1007PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zhao S, Xu W, Jiang W et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yang L, Vaitheesvaran B, Hartil K et al (2011) The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching. J Proteome Res 10:4134–4149PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Weinert BT, Wagner SA, Horn H et al (2011) Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal 4:ra48PubMedCrossRefGoogle Scholar
  13. 13.
    Simon GM, Cheng J, Gordon JI (2012) Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice. Proc Natl Acad Sci U S A 109:11133–11138PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Henriksen P, Wagner SA, Weinert BT et al (2012) Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics 11:1510–1522PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lundby A, Lage K, Weinert BT et al (2012) Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2:419–431PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Foster DB, Liu T, Rucker J et al (2013) The cardiac acetyl-lysine proteome. PLoS One 8:e67513PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Brownell JE, Zhou J, Ranalli T et al (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851PubMedCrossRefGoogle Scholar
  19. 19.
    Shogren-Knaak M (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847CrossRefGoogle Scholar
  20. 20.
    Neumann H, Hancock SM, Buning R et al (2009) A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36:153–163PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hebert AS, Dittenhafer-Reed KE, Yu W et al (2013) Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 49:186–199CrossRefGoogle Scholar
  22. 22.
    Rardin MJ, Newman JC, Held JM et al (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci U S A 110:6601–6606PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sol EM, Wagner SA, Weinert BT et al (2012) Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3. PLoS One 7:e50545PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Baeza J, Dowell JA, Smallegan MJ et al (2014) Stoichiometry of site-specific lysine acetylation in an entire proteome. J Biol Chem 289:21326–21338PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dittenhafer-Reed KE, Richards AL, Fan J et al (2015) SIRT3 mediates multi-tissue coupling for metabolic fuel switching. Cell Metab 21:637–646PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Weinert BT, Iesmantavicius V, Moustafa T et al (2014) Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol Syst Biol 10:716PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Weinert BT, Moustafa T, Iesmantavicius V et al (2015) Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions. EMBO J 34:2620–2632PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Weinert BT, Iesmantavicius V, Wagner SA et al (2013) Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol Cell 51:265–272PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang Q, Gu J, Gong P et al (2013) Reversibly acetylated lysine residues play important roles in the enzymatic activity of Escherichia coli N-hydroxyarylamine O-acetyltransferase. FEBS J 280:1966–1979PubMedCrossRefGoogle Scholar
  30. 30.
    Nakayasu ES, Wu S, Sydor MA et al (2014) A method to determine lysine acetylation stoichiometries. Int J Proteomics 2014:730725PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kuhn ML, Zemaitaitis B, Hu LI et al (2014) Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation. PLoS One 9:e94816PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Schölz C, Weinert BT, Wagner SA et al (2015) Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat Biotechnol 33:415–423PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Svinkina T, Gu H, Silva JC et al (2015) Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol Cell Proteomics 14:2429–2440PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Elia AEH, Boardman AP, Wang DC et al (2015) Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol Cell 59:867–881PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Tanner KG, Trievel RC, Kuo M-H et al (1999) Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J Biol Chem 274:18157–18160PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Marmorstein R, Roth SY (2001) Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev 11:155–161PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Berndsen CE, Albaugh BN, Tan S et al (2007) Catalytic mechanism of a MYST family histone acetyltransferase. Biochemistry 46:623–629PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kolonko EM, Albaugh BN, Lindner SE et al (2010) Catalytic activation of histone acetyltransferase Rtt109 by a histone chaperone. Proc Natl Acad Sci U S A 107:20275–20280PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Albaugh BN, Kolonko EM, Denu JM (2010) Kinetic mechanism of the Rtt109-Vps75 histone acetyltransferase-chaperone complex. Biochemistry 49:6375–6385PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tanner KG, Langer MR, Denu JM (2000) Kinetic mechanism of human histone acetyltransferase P/CAF. Biochemistry 39:11961–11969PubMedCrossRefGoogle Scholar
  42. 42.
    Lau OD, Courtney AD, Vassilev A et al (2000) p300/CBP-associated factor histone acetyltransferase processing of a peptide substrate: kinetic analysis of the catalytic mechanism. J Biol Chem 275:21953–21959PubMedCrossRefGoogle Scholar
  43. 43.
    Khochbin S, Verdel A, Lemercier C et al (2001) Functional significance of histone deacetylase diversity. Curr Opin Genet Dev 11:162–166PubMedCrossRefGoogle Scholar
  44. 44.
    Imai S, Armstrong CM, Kaeberlein M et al (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800CrossRefGoogle Scholar
  45. 45.
    Fischle W, Kiermer V, Dequiedt F et al (2001) The emerging role of class II histone deacetylases. Biochem Cell Biol 79:337–348PubMedCrossRefGoogle Scholar
  46. 46.
    Denu JM (2003) Linking chromatin function with metabolic networks: Sir2 family of NAD(+)-dependent deacetylases. Trends Biochem Sci 28:41–48PubMedCrossRefGoogle Scholar
  47. 47.
    Feldman JL, Baeza J, Denu JM (2013) Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 288:31350–31356PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Mihaylova MM, Shaw RJ (2013) Metabolic reprogramming by class I and II histone deacetylases. Trends Endocrinol Metab 24:48–57PubMedCrossRefGoogle Scholar
  49. 49.
    Cai L, Sutter BM, Li B et al (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42:426–437PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Morrish F, Noonan J, Perez-Olsen C et al (2010) Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J Biol Chem 285:36267–36274PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Evertts AG, Zee BM, Dimaggio PA et al (2013) Quantitative dynamics of the link between cellular metabolism and histone acetylation. J Biol Chem 288:12142–12151PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wellen KE, Hatzivassiliou G, Sachdeva UM et al (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cai L, Tu BP (2012) Driving the cell cycle through metabolism. Annu Rev Cell Dev Biol 28:59–87PubMedCrossRefGoogle Scholar
  54. 54.
    Friis RMN, Wu BP, Reinke SN et al (2009) A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res 37:3969–3980PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zhao S, Torres AM, Henry RA et al (2016) ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell Rep 17:1037–1052PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Carrer A, Parris JLD, Trefely S et al (2017) Impact of a high-fat diet on tissue acyl-CoA and histone acetylation levels. J Biol Chem 292:3312–3322PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lee JV, Carrer A, Shah S et al (2014) Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab 20:306–319PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A 103:10230–10235PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Schwer B, Bunkenborg J, Verdin RO et al (2006) Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci U S A 103:10224–10229PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Starai VJ (2002) Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390–2392PubMedCrossRefGoogle Scholar
  61. 61.
    Pehar M, Puglielli L (2013) Lysine acetylation in the lumen of the ER: a novel and essential function under the control of the UPR. Biochim Biophys Acta 1833:686–697PubMedCrossRefGoogle Scholar
  62. 62.
    Pehar M, Lehnus M, Karst A et al (2012) Proteomic assessment shows that many endoplasmic reticulum (ER)-resident proteins are targeted by N(epsilon)-lysine acetylation in the lumen of the organelle and predicts broad biological impact. J Biol Chem 287:22436–22440PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ogryzko VV, Schiltz RL, Russanova V et al (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959CrossRefGoogle Scholar
  64. 64.
    Schiltz RL, Mizzen CA, Vassilev A et al (1999) Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem 274:1189–1192PubMedCrossRefGoogle Scholar
  65. 65.
    Kundu TK, Palhan VB, Wang Z et al (2000) Activator-dependent transcription from chromatin in vitro involving targeted histone acetylation by p300. Mol Cell 6:551–561PubMedCrossRefGoogle Scholar
  66. 66.
    McManus KJ, Hendzel MJ (2003) Quantitative analysis of CBP- and P300-induced histone acetylations in vivo using native chromatin. Mol Cell Biol 23:7611–7627PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Yang Y-Y, Yu-Ying Y, Grammel M et al (2011) Identification of lysine acetyltransferase p300 substrates using 4-pentynoyl-coenzyme A and bioorthogonal proteomics. Bioorg Med Chem Lett 21:4976–4979PubMedCrossRefGoogle Scholar
  68. 68.
    Karanam B, Jiang L, Wang L et al (2006) Kinetic and mass spectrometric analysis of p300 histone acetyltransferase domain autoacetylation. J Biol Chem 281:40292–40301CrossRefGoogle Scholar
  69. 69.
    Stiehl DP, Fath DM, Liang D et al (2007) Histone deacetylase inhibitors synergize p300 autoacetylation that regulates its transactivation activity and complex formation. Cancer Res 67:2256–2264PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wagner GR, Payne RM (2013) Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem 288:29036–29045PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ghanta S, Grossmann RE, Brenner C (2013) Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications. Crit Rev Biochem Mol Biol 48:561–574PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wagner GR, Hirschey MD (2014) Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol Cell 54:5–16PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Paik WK, Pearson D, Lee HW et al (1970) Nonenzymatic acetylation of histones with acetyl-CoA. Biochim Biophys Acta 213:513–522PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Baeza J, Smallegan MJ, Denu JM (2015) Site-specific reactivity of nonenzymatic lysine acetylation. ACS Chem Biol 10:122–128PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Hansen JC, Tse C, Wolffe AP (1998) Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37:17637–17641PubMedCrossRefGoogle Scholar
  76. 76.
    López-Rodas G, Brosch G, Georgieva EI et al (1993) Histone deacetylase. A key enzyme for the binding of regulatory proteins to chromatin. FEBS Lett 317:175–180PubMedCrossRefGoogle Scholar
  77. 77.
    Daujat S, Bauer U-M, Shah V et al (2002) Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 12:2090–2097PubMedCrossRefGoogle Scholar
  78. 78.
    Hecht A, Laroche T, Strahl-Bolsinger S et al (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80:583–592PubMedCrossRefGoogle Scholar
  79. 79.
    Yu Y, Song C, Zhang Q et al (2012) Histone H3 lysine 56 methylation regulates DNA replication through its interaction with PCNA. Mol Cell 46:7–17PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12:599–606PubMedCrossRefGoogle Scholar
  81. 81.
    Clark D, Reitman M, Studitsky V et al (1993) Chromatin structure of transcriptionally active genes. Cold Spring Harb Symp Quant Biol 58:1–6PubMedCrossRefGoogle Scholar
  82. 82.
    Dhalluin C, Carlson JE, Zeng L, et al (2002) Structure and ligand of a histone acetyltransferase bromodomain.  https://doi.org/10.2210/pdb1n72/pdb
  83. 83.
    Soutoglou E, Katrakili N, Talianidis I (2000) Acetylation regulates transcription factor activity at multiple levels. Mol Cell 5:745–751PubMedCrossRefGoogle Scholar
  84. 84.
    Park J-M, Jo S-H, Kim M-Y et al (2015) Role of transcription factor acetylation in the regulation of metabolic homeostasis. Protein Cell 6:804–813PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Thiagarajan D, Vedantham S, Ananthakrishnan R et al (2016) Mechanisms of transcription factor acetylation and consequences in hearts. Biochim Biophys Acta 1862:2221–2231PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Tsubota T, Berndsen CE, Erkmann JA et al (2007) Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes. Mol Cell 25:703–712PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655PubMedCrossRefGoogle Scholar
  88. 88.
    Reed NA, Cai D, Blasius TL et al (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16:2166–2172PubMedCrossRefGoogle Scholar
  89. 89.
    Baeza J, Smallegan MJ, Denu JM (2016) Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem Sci 41:231–244PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Michalski A, Cox J, Mann M (2011) More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC−MS/MS. J Proteome Res 10:1785–1793PubMedCrossRefGoogle Scholar
  91. 91.
    Bruderer R, Bernhardt OM, Gandhi T et al (2015) Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 14:1400–1410PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Schilling B, Rardin MJ, MacLean BX et al (2012) Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation. Mol Cell Proteomics 11:202–214PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Dowell JA, Frost DC, Zhang J et al (2008) Comparison of two-dimensional fractionation techniques for shotgun proteomics. Anal Chem 80:6715–6723PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247CrossRefGoogle Scholar
  95. 95.
    Wolters DA, Washburn MP, Yates JR 3rd (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690PubMedCrossRefGoogle Scholar
  96. 96.
    Boisvert F-M, Ahmad Y, Gierliński M et al (2011) A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics 11:M111.011429PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kori Y, Sidoli S, Yuan Z-F et al (2017) Proteome-wide acetylation dynamics in human cells. Sci Rep 7:10296PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Fan J, Baeza J, Denu JM (2016) Investigating histone acetylation stoichiometry and turnover rate. Methods Enzymol 574:125–148PubMedCrossRefGoogle Scholar
  99. 99.
    Krautkramer KA, Reiter L, Denu JM et al (2015) Quantification of SAHA-dependent changes in histone modifications using data-independent acquisition mass spectrometry. J Proteome Res 14:3252–3262PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lin S, Garcia BA (2012) Examining histone posttranslational modification patterns by high-resolution mass spectrometry. Methods Enzymol 512:3–28PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906PubMedCrossRefGoogle Scholar
  102. 102.
    Bruderer R, Bernhardt OM, Gandhi T et al (2016) High-precision iRT prediction in the targeted analysis of data-independent acquisition and its impact on identification and quantitation. Proteomics 16:2246–2256PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Baeza J, Lawton AJ, Fan J, et al (2018) Quantifying dynamic protein acetylation using quantitative stoichiometry. bioRxiv doi: https://doi.org/10.1101/472530
  104. 104.
    Tyanova S, Temu T, Carlson A et al (2015) Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics 15:1453–1456PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372CrossRefGoogle Scholar
  106. 106.
    Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805PubMedCrossRefGoogle Scholar
  107. 107.
    Cox J, Mann M (2009) Computational principles of determining and improving mass precision and accuracy for proteome measurements in an Orbitrap. J Am Soc Mass Spectrom 20:1477–1485PubMedCrossRefGoogle Scholar
  108. 108.
    Cox J, Michalski A, Mann M (2011) Software lock mass by two-dimensional minimization of peptide mass errors. J Am Soc Mass Spectrom 22:1373–1380PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Egertson JD, MacLean B, Johnson R et al (2015) Multiplexed peptide analysis using data-independent acquisition and Skyline. Nat Protoc 10:887–903PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Claesen J, Dittwald P, Burzykowski T et al (2012) An efficient method to calculate the aggregated isotopic distribution and exact center-masses. J Am Soc Mass Spectrom 23:753–763PubMedCrossRefGoogle Scholar
  111. 111.
    Meyer JG, D’Souza AK, Sorensen DJ et al (2016) Quantification of lysine acetylation and succinylation stoichiometry in proteins using mass spectrometric data-independent acquisitions (SWATH). J Am Soc Mass Spectrom 27:1758–1771PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Still AJ, Floyd BJ, Hebert AS et al (2013) Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation. J Biol Chem 288:26209–26219PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Weinert BT, Satpathy S, Hansen BK et al (2017) Accurate quantification of site-specific acetylation stoichiometry reveals the impact of sirtuin deacetylase CobB on the E. coli acetylome. Mol Cell Proteomics 16:759–769PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Zhou T, Chung Y-H, Chen J et al (2016) Site-specific identification of lysine acetylation stoichiometries in mammalian cells. J Proteome Res 15:1103–1113PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anastasia J. Lindahl
    • 1
    • 2
  • Alexis J. Lawton
    • 1
    • 2
  • Josue Baeza
    • 1
    • 2
    • 3
    • 4
  • James A. Dowell
    • 1
  • John M. Denu
    • 1
    • 2
    • 5
    Email author
  1. 1.Wisconsin Institute of DiscoveryUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Biomolecular Chemistry Department, School of Medicine and Public HealthUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Epigenetics Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  5. 5.Morgridge Institute for ResearchUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations