Skip to main content

Functional Analysis of HDACs in Tumorigenesis

  • Protocol
  • First Online:
Protein Acetylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1983))

Abstract

HDACs, originally described as histone modifiers, have recently been demonstrated to modify a variety of other proteins that are involved in diverse cellular processes unrelated to the chromatin environment. This includes deacetylation of nonhistone targets involved in multiple signaling pathways. In this regard, a considerable number of reports have analyzed the role of nonspecific inhibition of HDACs through pan-HDACi in cancer as well as processes of immune regulation. However, with pan-HDACi there is a lack of understanding about the exact contribution of inhibition of each individual HDAC, which makes the rational design of improved drug candidates extremely difficult. Additionally, current approaches using nonselective HDACi in the clinic have critical limitations, including pan-HDACi which elicit poor activity in solid tumors and cardiac toxicity, class I HDACi which activate multiple apoptotic pathways, limiting its use for longer periods of time, and class I-HDAC6i that evidenced a number of adverse effects in initial clinical trials. Therefore, there is a growing interest in the identification of more selective HDACi, and the subsequent development of accurate functional tests to identify the effectiveness and selectivity of these inhibitors. In this chapter, we are describing some selected methodologies to identify the individual activities of HDACs. In addition, we present specific methods to identify enzymatic and nonenzymatic molecular targets of HDACs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scholz C et al (2015) Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat Biotechnol 33(4):415–423

    Article  CAS  PubMed  Google Scholar 

  2. Choudhary C et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840

    Article  CAS  PubMed  Google Scholar 

  3. Kim SC et al (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23(4):607–618

    Article  CAS  PubMed  Google Scholar 

  4. Ozdag H et al (2006) Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics 7:90

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fraga MF et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400

    Article  CAS  PubMed  Google Scholar 

  6. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6(4):a018713

    Article  PubMed  PubMed Central  Google Scholar 

  8. Leipe DD, Landsman D (1997) Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily. Nucleic Acids Res 25(18):3693–3697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Glozak MA, Seto E (2007) Histone deacetylases and cancer. Oncogene 26(37):5420–5432

    Article  CAS  PubMed  Google Scholar 

  10. Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338(1):17–31

    Article  CAS  PubMed  Google Scholar 

  11. Grunstein M, Gasser SM (2013) Epigenetics in Saccharomyces cerevisiae. Cold Spring Harb Perspect Biol 5(7):a017491

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277(28):25748–25755

    Article  CAS  PubMed  Google Scholar 

  13. Reichert N, Choukrallah MA, Matthias P (2012) Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell Mol Life Sci 69(13):2173–2187

    Article  CAS  PubMed  Google Scholar 

  14. Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9(3):206–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bosch-Presegue L, Vaquero A (2011) The dual role of sirtuins in cancer. Genes Cancer 2(6):648–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Villagra A et al (2009) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10(1):92–100

    Article  CAS  PubMed  Google Scholar 

  17. Suliman BA, Xu D, Williams BRG (2012) HDACi: molecular mechanisms and therapeutic implications in the innate immune system. Immunol Cell Biol 90(1):23–32

    Article  CAS  PubMed  Google Scholar 

  18. Zhang H, Xiao Y, Zhu Z, Li B, Greene MI (2012) Immune regulation by histone deacetylases: a focus on the alteration of FOXP3 activity. Immunol Cell Biol 90(1):95–100

    Article  PubMed  Google Scholar 

  19. Das Gupta K, Shakespear MR, Iyer A, Fairlie DP, Sweet MJ (2016) Histone deacetylases in monocyte/macrophage development, activation and metabolism: refining HDAC targets for inflammatory and infectious diseases. Clin Transl Immunol 5(1):e62

    Article  Google Scholar 

  20. Mullican SE et al (2011) Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev 25(23):2480–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. True O, Matthias P (2012) Interplay between histone deacetylases and autophagy—from cancer therapy to neurodegeneration. Immunol Cell Biol 90(1):78–84

    Article  PubMed  Google Scholar 

  22. Bolden JE et al (2013) HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses. Cell Death Dis 4:e519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hancock WW (2011) Rationale for HDAC inhibitor therapy in autoimmunity and transplantation. Handb Exp Pharmacol 206:103–123

    Article  CAS  PubMed  Google Scholar 

  24. Iyer A, Fairlie DP, Brown L (2012) Lysine acetylation in obesity, diabetes and metabolic disease. Immunol Cell Biol 90(1):39–46

    Article  CAS  PubMed  Google Scholar 

  25. Rao R, Fiskus W, Ganguly S, Kambhampati S, Bhalla KN (2012) HDAC inhibitors and chaperone function. Adv Cancer Res 116:239–262

    Article  CAS  PubMed  Google Scholar 

  26. Kovacs JJ et al (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18(5):601–607

    Article  CAS  PubMed  Google Scholar 

  27. Kamemura K et al (2012) Depression of mitochondrial metabolism by downregulation of cytoplasmic deacetylase, HDAC6. FEBS Lett 586(9):1379–1383

    Article  CAS  PubMed  Google Scholar 

  28. Koya RC et al (2012) BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer Res 72(16):3928–3937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bannister AJ, Miska EA (2000) Regulation of gene expression by transcription factor acetylation. Cell Mol Life Sci 57(8–9):1184–1192

    Article  CAS  PubMed  Google Scholar 

  30. Rikiishi H (2011) Autophagic and apoptotic effects of HDAC inhibitors on cancer cells. J Biomed Biotechnol 2011:830260

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, Zhong Q (2014) Histone deacetylase inhibitors and cell death. Cell Mol Life Sci 71(20):3885–3901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gryder BE, Sodji QH, Oyelere AK (2012) Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem 4(4):505–524

    Article  CAS  PubMed  Google Scholar 

  33. Dickinson M, Johnstone RW, Prince HM (2010) Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect. Investig New Drugs 28(Suppl 1):S3–S20

    Article  Google Scholar 

  34. Walkinshaw DR, Tahmasebi S, Bertos NR, Yang XJ (2008) Histone deacetylases as transducers and targets of nuclear signaling. J Cell Biochem 104:1541–1552

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Yang H, Huang S, Qiu Y (2014) Histone deacetylase 1 and p300 can directly associate with chromatin and compete for binding in a mutually exclusive manner. PLoS One 9(4):e94523

    Article  PubMed  PubMed Central  Google Scholar 

  36. Doetzlhofer A et al (1999) Histone deacetylase 1 can repress transcription by binding to Sp1. Mol Cell Biol 19(8):5504–5511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu Y, Zhang X, Salmon M, Zehner ZE (2007) The zinc finger repressor, ZBP-89, recruits histone deacetylase 1 to repress vimentin gene expression. Genes Cells 12(8):905–918

    Article  CAS  PubMed  Google Scholar 

  38. Lee TI, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc. 1(2):729–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc. 1(1):179–85

    Article  CAS  PubMed  Google Scholar 

  40. Cheng F et al (2014) Divergent roles of histone deacetylase 6 (HDAC6) and histone deacetylase 11 (HDAC11) on the transcriptional regulation of IL10 in antigen presenting cells. Mol Immunol 60(1):44–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported entirely by Team Award, Melanoma Research Foundation. We thank Kimberlyn Acklin from the flow cytometry core laboratory and Erica Palmer for assistance with animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Villagra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hadley, M., Noonepalle, S., Banik, D., Villagra, A. (2019). Functional Analysis of HDACs in Tumorigenesis. In: Brosh, Jr., R. (eds) Protein Acetylation. Methods in Molecular Biology, vol 1983. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9434-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9434-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9433-5

  • Online ISBN: 978-1-4939-9434-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics