Skip to main content

Biochemical and Cellular Assays to Assess the Effects of Acetylation on Base Excision Repair Enzymes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1983))

Abstract

Protein posttranslational modifications (PTMs), including acetylation, have emerged as important regulators for controlling many cellular processes. DNA base excision repair (BER), a highly coordinated multistep cellular process, is primarily involved in the repair of both endogenous and drug-induced exogenous DNA base damages. BER relies on sequential recruitment and coordinated actions of multiple proteins. Increasing evidence suggests that acetylation of lysine residues of BER proteins facilitates fine-tuning of enzymatic activities, protein-protein interactions, and coordination of the steps in BER pathway. In this chapter, we describe detailed in vitro and in vivo approaches to examine the effect of acetylation on BER enzymes, focusing on the impact of acetylation of AP-endonuclease (APE1), a key enzyme in BER pathway, on its DNA damage repair activity, substrate-binding, and subcellular localization.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840. https://doi.org/10.1126/science.1175371

    Article  CAS  Google Scholar 

  2. Polevoda B, Sherman F (2002) The diversity of acetylated proteins. Genome Biol 3:reviews0006

    Article  Google Scholar 

  3. Piekna-Przybylska D, Bambara RA, Balakrishnan L (2016) Acetylation regulates DNA repair mechanisms in human cells. Cell Cycle 15:1506–1517. https://doi.org/10.1080/15384101.2016.1176815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spange S, Wagner T, Heinzel T, Kramer OH (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41:185–198. https://doi.org/10.1016/j.biocel.2008.08.027

    Article  CAS  PubMed  Google Scholar 

  5. Busso CS, Lake MW, Izumi T (2010) Posttranslational modification of mammalian AP endonuclease (APE1). Cell Mol Life Sci 67:3609–3620. https://doi.org/10.1007/s00018-010-0487-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carter RJ, Parsons JL (2016) Base excision repair, a pathway regulated by posttranslational modifications. Mol Cell Biol 36:1426–1437. https://doi.org/10.1128/MCB.00030-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447:941–950. pii: nature05978

    Article  CAS  Google Scholar 

  8. Dianov GL, Hubscher U (2013) Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res 41:3483–3490. https://doi.org/10.1093/nar/gkt076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parikh SS, Mol CD, Hosfield DJ, Tainer JA (1999) Envisioning the molecular choreography of DNA base excision repair. Curr Opin Struct Biol 9:37–47. pii: S0959-440X(99)80006-2

    Article  CAS  Google Scholar 

  10. Mitra S, Izumi T, Boldogh I, Bhakat KK, Hill JW, Hazra TK (2002) Choreography of oxidative damage repair in mammalian genomes. Free Radic Biol Med 33:15–28. pii: S0891584902008195

    Article  CAS  Google Scholar 

  11. Bhakat KK, Hazra TK, Mitra S (2004) Acetylation of the human DNA glycosylase NEIL2 and inhibition of its activity. Nucleic Acids Res 32:3033–3039. https://doi.org/10.1093/nar/gkh632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sengupta S, Yang C, Hegde ML, Hegde PM, Mitra J, Pandey A, Dutta A, Datarwala AT, Bhakat KK, Mitra S (2018) Acetylation of oxidized base repair-initiating NEIL1 DNA glycosylase required for chromatin-bound repair complex formation in the human genome increases cellular resistance to oxidative stress. DNA Repair (Amst) 66–67:1–10. pii: S1568-7864(18)30072-7

    Google Scholar 

  13. Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P (2002) Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol Cell 9:265–277. pii: S1097-2765(02)00453-7

    Article  CAS  Google Scholar 

  14. Bhakat KK, Mokkapati SK, Boldogh I, Hazra TK, Mitra S (2006) Acetylation of human 8-oxoguanine-DNA glycosylase by p300 and its role in 8-oxoguanine repair in vivo. Mol Cell Biol 26:1654–1665. pii: 26/5/1654

    Article  CAS  Google Scholar 

  15. Roychoudhury S, Nath S, Song H, Hegde ML, Bellot LJ, Mantha AK, Sengupta S, Ray S, Natarajan A, Bhakat KK (2017) Human apurinic/apyrimidinic endonuclease (APE1) is acetylated at DNA damage sites in chromatin, and acetylation modulates its DNA repair activity. Mol Cell Biol 37:e00401-16. Print 15 Mar 2017. pii: e00401-16

    Article  Google Scholar 

  16. Bhakat KK, Izumi T, Yang SH, Hazra TK, Mitra S (2003) Role of acetylated human AP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene. EMBO J 22:6299–6309. https://doi.org/10.1093/emboj/cdg595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lirussi L, Antoniali G, Vascotto C, D’Ambrosio C, Poletto M, Romanello M, Marasco D, Leone M, Quadrifoglio F, Bhakat KK, Scaloni A, Tell G (2012) Nucleolar accumulation of APE1 depends on charged lysine residues that undergo acetylation upon genotoxic stress and modulate its BER activity in cells. Mol Biol Cell 23:4079–4096. https://doi.org/10.1091/mbc.E12-04-0299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hasan S, El-Andaloussi N, Hardeland U, Hassa PO, Burki C, Imhof R, Schar P, Hottiger MO (2002) Acetylation regulates the DNA end-trimming activity of DNA polymerase beta. Mol Cell 10:1213–1222. pii: S1097-2765(02)00745-1

    Article  CAS  Google Scholar 

  19. Sengupta S, Mantha AK, Song H, Roychoudhury S, Nath S, Ray S, Bhakat KK (2016) Elevated level of acetylation of APE1 in tumor cells modulates DNA damage repair. Oncotarget 7:75197–75209. https://doi.org/10.18632/oncotarget.12113

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yamamori T, DeRicco J, Naqvi A, Hoffman TA, Mattagajasingh I, Kasuno K, Jung SB, Kim CS, Irani K (2010) SIRT1 deacetylates APE1 and regulates cellular base excision repair. Nucleic Acids Res 38:832–845. https://doi.org/10.1093/nar/gkp1039

    Article  CAS  PubMed  Google Scholar 

  21. Das A, Wiederhold L, Leppard JB, Kedar P, Prasad R, Wang H, Boldogh I, Karimi-Busheri F, Weinfeld M, Tomkinson AE, Wilson SH, Mitra S, Hazra TK (2006) NEIL2-initiated, APE-independent repair of oxidized bases in DNA: evidence for a repair complex in human cells. DNA Repair (Amst) 5:1439–1448. pii: S1568-7864(06)00216-3

    Article  CAS  Google Scholar 

  22. Olive PL, Banath JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1:23–29. pii: nprot.2006.5

    Article  CAS  Google Scholar 

  23. Chattopadhyay R, Das S, Maiti AK, Boldogh I, Xie J, Hazra TK, Kohno K, Mitra S, Bhakat KK (2008) Regulatory role of human AP-endonuclease (APE1/Ref-1) in YB-1-mediated activation of the multidrug resistance gene MDR1. Mol Cell Biol 28:7066–7080. https://doi.org/10.1128/MCB.00244-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhakat KK, Yang SH, Mitra S (2003) Acetylation of human AP-endonuclease 1, a critical enzyme in DNA repair and transcription regulation. Methods Enzymol 371:292–300. https://doi.org/10.1016/S0076-6879(03)71022-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by NIH/NCI R01CA148941 and Nebraska state DHS LB506 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor K. Bhakat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Roychoudhury, S., Pramanik, S., Harris, H.L., Bhakat, K.K. (2019). Biochemical and Cellular Assays to Assess the Effects of Acetylation on Base Excision Repair Enzymes. In: Brosh, Jr., R. (eds) Protein Acetylation. Methods in Molecular Biology, vol 1983. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9434-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9434-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9433-5

  • Online ISBN: 978-1-4939-9434-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics