Skip to main content

Nuclear Foci Assays in Live Cells

  • Protocol
  • First Online:
Radiation Cytogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1984))

Abstract

DNA double strand breaks (DSBs) are a serious threat to genome stability and cell viability. Accurate detection of DSBs is critical for the basic understanding of cellular response to ionizing radiation. Recruitment and retention of DNA repair and response proteins at DSBs can be conveniently visualized by fluorescence imaging (often called ionizing radiation-induced foci) both in live and fixed cells. In this chapter, we describe a live cell imaging methodology that directly monitors induction and repair of single DSB, recruitment kinetics of DSB repair/sensor factors to DSB sites, and dynamic interaction of DSB repair/sensor proteins with DSBs at single-cell level. Additionally, the methodology described in this chapter can be readily adapted to other DSBs repair/sensor factors and cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rogakou EP et al (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146(5):905–916

    Article  CAS  Google Scholar 

  2. Sedelnikova OA et al (2002) Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. Radiat Res 158(4):486–492

    Article  CAS  Google Scholar 

  3. Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A 100(9):5057–5062

    Article  CAS  Google Scholar 

  4. Ismail IH, Hendzel MJ (2008) The gamma-H2A.X: is it just a surrogate marker of double-strand breaks or much more? Environ Mol Mutagen 49(1):73–82

    Article  CAS  Google Scholar 

  5. Chan DW et al (2002) Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev 16(18):2333–2338

    Article  CAS  Google Scholar 

  6. Schultz LB et al (2000) p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol 151(7):1381–1390

    Article  CAS  Google Scholar 

  7. Rappold I et al (2001) Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J Cell Biol 153(3):613–620

    Article  CAS  Google Scholar 

  8. Asaithamby A et al (2008) Repair of HZE-particle-induced DNA double-strand breaks in normal human fibroblasts. Radiat Res 169(4):437–446

    Article  CAS  Google Scholar 

  9. Asaithamby A, Chen DJ (2009) Cellular responses to DNA double-strand breaks after low-dose gamma-irradiation. Nucleic Acids Res 37(12):3912–3923

    Article  CAS  Google Scholar 

  10. Aten JA et al (2004) Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303(5654):92–95

    Article  CAS  Google Scholar 

  11. Costes SV et al (2007) Image-based modeling reveals dynamic redistribution of DNA damage into nuclear sub-domains. PLoS Comput Biol 3(8):e155

    Article  Google Scholar 

  12. Asaithamby A, Chen DJ (2011) Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation. Mutat Res 711(1–2):87–99

    Article  CAS  Google Scholar 

  13. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  Google Scholar 

  14. Wiedenmann J et al (2004) Identification of GFP-like proteins in nonbioluminescent, azooxanthellate anthozoa opens new perspectives for bioprospecting. Mar Biotechnol (NY) 6(3):270–277

    Article  CAS  Google Scholar 

  15. Alieva NO et al (2008) Diversity and evolution of coral fluorescent proteins. PLoS One 3(7):e2680

    Article  Google Scholar 

  16. Nienhaus GU, Wiedenmann J (2009) Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. ChemPhysChem 10(9–10):1369–1379

    Article  CAS  Google Scholar 

  17. Lan L et al (2005) Accumulation of Werner protein at DNA double-strand breaks in human cells. J Cell Sci 118(Pt 18):4153–4162

    Article  CAS  Google Scholar 

  18. Uematsu N et al (2007) Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J Cell Biol 177(2):219–229

    Article  CAS  Google Scholar 

  19. Jakob B et al (2009) Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc Natl Acad Sci U S A 106(9):3172–3177

    Article  CAS  Google Scholar 

  20. Neumaier T et al (2012) Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc Natl Acad Sci U S A 109(2):443–448

    Article  Google Scholar 

  21. Karanam K et al (2012) Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell 47(2):320–329

    Article  CAS  Google Scholar 

  22. Jakob B et al (2005) Live cell imaging of heavy-ion-induced radiation responses by beamline microscopy. Radiat Res 163(6):681–690

    Article  CAS  Google Scholar 

  23. Jakob B, Splinter J, Taucher-Scholz G (2009) Positional stability of damaged chromatin domains along radiation tracks in mammalian cells. Radiat Res 171(4):405–418

    Article  CAS  Google Scholar 

  24. Saha J et al (2014) Biological characterization of low-energy ions with high-energy deposition on human cells. Radiat Res 182(3):282–291

    Article  Google Scholar 

  25. Asaithamby A, Hu B, Chen DJ (2011) Unrepaired clustered DNA lesions induce chromosome breakage in human cells. Proc Natl Acad Sci U S A 108(20):8293–8298

    Article  CAS  Google Scholar 

  26. Asaithamby A et al (2011) Irreparable complex DNA double-strand breaks induce chromosome breakage in organotypic three-dimensional human lung epithelial cell culture. Nucleic Acids Res 39(13):5474–5488

    Article  CAS  Google Scholar 

  27. van Oven C et al (2009) An ultrasoft X-ray multi-microbeam irradiation system for studies of DNA damage responses by fixed- and live-cell fluorescence microscopy. Eur Biophys J 38(6):721–728

    Article  Google Scholar 

  28. Schettino G, Al Rashid ST, Prise KM (2010) Radiation microbeams as spatial and temporal probes of subcellular and tissue response. Mutat Res 704(1–3):68–77

    Article  CAS  Google Scholar 

  29. Schettino G et al (2011) Spatiotemporal investigations of DNA damage repair using microbeams. Radiat Prot Dosim 143(2–4):340–343

    Article  CAS  Google Scholar 

  30. Bigelow AW et al (2013) UV microspot irradiator at Columbia University. Radiat Environ Biophys 52(3):411–417

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institute of Aging (R01AG053341) Grant (to A.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aroumougame Asaithamby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mori, E., Asaithamby, A. (2019). Nuclear Foci Assays in Live Cells. In: Kato, T., Wilson, P. (eds) Radiation Cytogenetics. Methods in Molecular Biology, vol 1984. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9432-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9432-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9430-4

  • Online ISBN: 978-1-4939-9432-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics