Skip to main content

Analysis of Radiation-Induced Chromosome Exchanges Using Combinatorial Chromosome Painting

  • Protocol
  • First Online:
Radiation Cytogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1984))

Abstract

Combinatorial chromosome painting techniques such as multiplex fluorescence in situ hybridization (mFISH) or Spectral Karyotyping (SKY) follow basic fluorescence in situ hybridization (FISH) procedures but use combinations of fluorochromes to label probes to specific chromosomes in such a way that each chromosome is painted with a unique signal. Such signals are captured with image analysis systems allowing the construction of karyotypes with each chromosome unambiguously identified. These systems allow chromosomal analysis in great detail and are particularly useful for the detection of complex chromosome exchanges that originate from three or more breaks. This chapter will describe methods that can be used to analyze the results obtained in mFISH karyotypes particularly with relation to complex chromosome exchanges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lucas JN, Tenjin T, Straume T, Pinkel D, Moore D 2nd, Litt M et al (1989) Rapid human chromosome aberration analysis using fluorescence in situ hybridization. Int J Radiat Biol 56:35–44

    Article  CAS  Google Scholar 

  2. Brown JM, Kovacs MS (1993) Visualization of nonreciprocal chromosome exchanges in irradiated human fibroblasts by fluorescence in situ hybridization. Radiat Res 136:71–76

    Article  CAS  Google Scholar 

  3. Savage JR, Simpson PJ (1994) Fish “painting” patterns resulting from complex exchanges. Mutat Res 312:51–60

    Article  CAS  Google Scholar 

  4. Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor fish. Nat Genet 12:368–375

    Article  CAS  Google Scholar 

  5. Schrock E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA et al (1996) Multicolor spectral karyotyping of human chromosomes. Science 273:494–497

    Article  CAS  Google Scholar 

  6. Cornforth MN (2001) Analyzing radiation-induced complex chromosome rearrangements by combinatorial painting. Radiat Res 155:643–659

    Article  CAS  Google Scholar 

  7. Loucas BD, Cornforth MN (2001) Complex chromosome exchanges induced by gamma rays in human lymphocytes: an mFISH study. Radiat Res 155:660–671

    Article  CAS  Google Scholar 

  8. Tucker JD, Morgan WF, Awa AA, Bauchinger M, Blakey D, Cornforth MN et al (1995) Paint: a proposed nomenclature for structural aberrations detected by whole chromosome painting. Mutat Res 347:21–24

    Article  CAS  Google Scholar 

  9. Kodama Y, Nakano M, Ohtaki K, Delongchamp R, Awa AA, Nakamura N (1997) Estimation of minimal size of translocated chromosome segments detectable by fluorescence in situ hybridization. Int J Radiat Biol 71:35–39

    Article  CAS  Google Scholar 

  10. Boei JJ, Vermeulen S, Fomina J, Natarajan AT (1998) Detection of incomplete exchanges and interstitial fragments in X-irradiated human lymphocytes using a telomeric PNA probe. Int J Radiat Biol 73:599–603

    Article  CAS  Google Scholar 

  11. Wu H, Durante M, Furusawa Y, George K, Kawata T, Cucinotta FA (2003) Truly incomplete and complex exchanges in prematurely condensed chromosomes of human fibroblasts exposed in vitro to energetic heavy ions. Radiat Res 160:418–424

    Article  CAS  Google Scholar 

  12. Fomina J, Darroudi F, Boei JJ, Natarajan AT (2000) Discrimination between complete and incomplete chromosome exchanges in x-irradiated human lymphocytes using fish with pan-centromeric and chromosome specific DNA probes in combination with telomeric pna probe. Int J Radiat Biol 76:807–813

    Article  CAS  Google Scholar 

  13. George KA, Hada M, Chappell L, Cucinotta FA (2013) Biological effectiveness of accelerated particles for the induction of chromosome damage: track structure effects. Radiat Res 180:25–33

    Article  CAS  Google Scholar 

  14. Loucas BD, Cornforth MN (2013) The LET dependence of unrepaired chromosome damage in human cells: a break too far? Radiat Res 179:393–405

    Article  CAS  Google Scholar 

  15. Levy D, Vazquez M, Cornforth M, Loucas B, Sachs RK, Arsuaga J (2004) Comparing DNA damage-processing pathways by computer analysis of chromosome painting data. J Comput Biol 11:626–641

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradford D. Loucas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Loucas, B.D. (2019). Analysis of Radiation-Induced Chromosome Exchanges Using Combinatorial Chromosome Painting. In: Kato, T., Wilson, P. (eds) Radiation Cytogenetics. Methods in Molecular Biology, vol 1984. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9432-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9432-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9430-4

  • Online ISBN: 978-1-4939-9432-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics