Skip to main content

Mouse Models for Diseases in the Cholangiocyte Lineage

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1981))

Abstract

Cholangiopathies are an important group of liver diseases affecting the biliary system, and the purpose of this review is to describe how diseases in the biliary system can be studied in mouse models. A particular focus is placed on mouse models for Alagille syndrome, a cholangiopathy with a strong genetic link to dysfunctional Notch signaling. Recently, a number of different genetic mouse models based on various manipulations of the Notch signaling pathway have been generated to study Alagille syndrome, and we discuss the resulting phenotypes, and possible causes for the phenotypic heterogeneity among the various models. In the final section, we provide a more general discussion on how well mouse models can be expected to mimic human liver disease, as well as an outlook toward the need for new technologies that can help us to gain new insights from mouse models for liver disease.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tam PK, Yiu RS, Lendahl U, Andersson ER (2018) Cholangiopathies—towards a molecular understanding. EBioMedicine 35:381–393

    Google Scholar 

  2. Reichert MC, Hall RA, Krawczyk M, Lammert F (2018) Genetic determinants of cholangiopathies: molecular and systems genetics. Biochim Biophys Acta Mol basis Dis 1864:1484–1490

    CAS  Google Scholar 

  3. Lazaridis KN, LaRusso NF (2015) The cholangiopathies. Mayo Clin Proc 90:791–800

    CAS  Google Scholar 

  4. Ober EA, Lemaigre FP (2018) Development of the liver: insights into organ and tissue morphogenesis. J Hepatol 68:1049–1062

    CAS  Google Scholar 

  5. Antoniou A, Raynaud P, Cordi S et al (2009) Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 136:2325–2333

    Google Scholar 

  6. Carpentier R, Suñer RE, van Hul N et al (2011) Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 141:1432–1438, 1438.e1–4

    CAS  Google Scholar 

  7. Coffinier C, Gresh L, Fiette L et al (2002) Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta. Development 129:1829–1838

    CAS  Google Scholar 

  8. Clotman F, Lannoy VJ, Reber M et al (2002) The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 129:1819–1828

    CAS  Google Scholar 

  9. Schaub JR, Huppert KA, Kurial SNT et al (2018) De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature 557:247–251

    CAS  Google Scholar 

  10. Decaens T, Godard C, de Reyniès A et al (2008) Stabilization of beta-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology 47:247–258

    CAS  Google Scholar 

  11. Cordi S, Godard C, Saandi T et al (2016) Role of β-catenin in development of bile ducts. Differentiation 91:42–49

    CAS  Google Scholar 

  12. Tan X, Yuan Y, Zeng G et al (2008) β-Catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology 47:1667–1679

    CAS  Google Scholar 

  13. Porat-Shliom N, Tietgens AJ, Van Itallie CM et al (2016) Liver kinase B1 regulates hepatocellular tight junction distribution and function in vivo. Hepatology 64:1317–1329

    CAS  Google Scholar 

  14. Woods A, Heslegrave AJ, Muckett PJ et al (2011) LKB1 is required for hepatic bile acid transport and canalicular membrane integrity in mice. Biochem J 434:49–60

    CAS  Google Scholar 

  15. Mariotti V, Strazzabosco M, Fabris L, Calvisi DF (2018) Animal models of biliary injury and altered bile acid metabolism. Biochim Biophys Acta Mol basis Dis 1864:1254–1261

    CAS  Google Scholar 

  16. Bray SJ (2016) Notch signalling in context. Nat Rev Mol Cell Biol 9:722–735

    Google Scholar 

  17. Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97:1235–1294

    CAS  Google Scholar 

  18. Sjöqvist M, Andersson ER (2017) Do as I say, Not(ch) as I do: lateral control of cell fate. Dev Biol 447(1):58–70. https://doi.org/10.1016/j.ydbio.2017.09.032

    Article  CAS  Google Scholar 

  19. Fiddes ITT, Lodewijk GAA, Mooring M et al (2018) Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 173:1356–1369.e22

    CAS  Google Scholar 

  20. Suzuki IKK, Gacquer D, Van Heurck R et al (2018) Human-specific NOTCH2NL genes expand cortical neurogenesis through delta/notch regulation. Cell 173:1370–1384.e16

    CAS  Google Scholar 

  21. Nijjar SS, Crosby HA, Wallace L et al (2001) Notch receptor expression in adult human liver: a possible role in bile duct formation and hepatic neovascularization. Hepatology 34:1184–1192

    CAS  Google Scholar 

  22. Flynn DM, Nijjar S, Hubscher SG et al (2004) The role of Notch receptor expression in bile duct development and disease. J Pathol 204:55–64

    CAS  Google Scholar 

  23. Crosnier C, Attié-Bitach T, Encha-Razavi F et al (2000) JAGGED1 gene expression during human embryogenesis elucidates the wide phenotypic spectrum of Alagille syndrome. Hepatology 32:574–581

    CAS  Google Scholar 

  24. Louis AA, Van Eyken P, Haber BA et al (1999) Hepatic jagged1 expression studies. Hepatology 30:1269–1275

    CAS  Google Scholar 

  25. Li L, Krantz ID, Deng Y et al (1997) Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 16:243–251

    CAS  Google Scholar 

  26. Oda T, Elkahloun AG, Pike BL et al (1997) Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 16:235–242

    CAS  Google Scholar 

  27. McDaniell R, Warthen DM, Sanchez-Lara PA et al (2006) NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 79:169–173

    CAS  Google Scholar 

  28. Andersson ER, Chivukula IV, Hankeova S et al (2018) Mouse model of Alagille syndrome and mechanisms of jagged1 missense mutations. Gastroenterology 154:1080–1095

    CAS  Google Scholar 

  29. Shulman SA, Hyams JS, Gunta R et al (1984) Arteriohepatic dysplasia (Alagille syndrome): extreme variability among affected family members. Am J Med Genet 19:325–332

    CAS  Google Scholar 

  30. Kamath BM, Krantz ID, Spinner NB et al (2002) Monozygotic twins with a severe form of Alagille syndrome and phenotypic discordance. Am J Med Genet 112:194–197

    Google Scholar 

  31. Mašek J, Andersson ER (2017) The developmental biology of genetic Notch disorders. Development 144:1743–1763

    Google Scholar 

  32. Xue Y, Gao X, Lindsell CE et al (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8:723–730

    CAS  Google Scholar 

  33. McCright B, Lozier J, Gridley T (2002) A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129:1075–1082

    CAS  Google Scholar 

  34. Thakurdas SM, Lopez MF, Kakuda S et al (2016) Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology 63:550–565

    CAS  Google Scholar 

  35. Ryan MJ, Bales C, Nelson A et al (2008) Bile duct proliferation in Jag1/fringe heterozygous mice identifies candidate modifiers of the alagille syndrome hepatic phenotype. Hepatology 48:1989–1997

    Google Scholar 

  36. Fernandez-Valdivia R, Takeuchi H, Samarghandi A et al (2011) Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development 138:1925–1934

    CAS  Google Scholar 

  37. Kiernan AE, Xu J, Gridley T (2006) The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet 2:e4

    Google Scholar 

  38. Loomes KM, Russo P, Ryan M et al (2007) Bile duct proliferation in liver-specific Jag1 conditional knockout mice: effects of gene dosage. Hepatology 45:323–330

    CAS  Google Scholar 

  39. Zhang L, Rubins NE, Ahima RS et al (2005) Foxa2 integrates the transcriptional response of the hepatocyte to fasting. Cell Metab 2:141–148

    Google Scholar 

  40. Kellendonk C, Opherk C, Anlag K et al (2000) Hepatocyte-specific expression of Cre recombinase. Genesis 26:151–153

    CAS  Google Scholar 

  41. Geisler F, Nagl F, Mazur PK et al (2008) Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology 48:607–616

    CAS  Google Scholar 

  42. Hofmann JJ, Zovein AC, Koh H et al (2010) Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development 137:4061–4072

    CAS  Google Scholar 

  43. Zong Y, Panikkar A, Xu J et al (2009) Notch signaling controls liver development by regulating biliary differentiation. Development 136:1727–1739

    CAS  Google Scholar 

  44. Kiernan AE, Ahituv N, Fuchs H et al (2001) The Notch ligand Jagged1 is required for inner ear sensory development. Proc Natl Acad Sci U S A 98:3873–3878

    CAS  Google Scholar 

  45. Tsai H, Hardisty RE, Rhodes C et al (2001) The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum Mol Genet 10:507–512

    CAS  Google Scholar 

  46. Hansson EM, Lanner F, Das D et al (2010) Control of Notch-ligand endocytosis by ligand-receptor interaction. J Cell Sci 123:2931–2942

    CAS  Google Scholar 

  47. Vrijens K, Thys S, De Jeu MT et al (2006) Ozzy, a Jag1 vestibular mouse mutant, displays characteristics of Alagille syndrome. Neurobiol Dis 24:28–40

    CAS  Google Scholar 

  48. Bosman EA, Quint E, Fuchs H et al (2009) Catweasel mice: a novel role for Six1 in sensory patch development and a model for branchio-oto-renal syndrome. Dev Biol 328:285–296

    CAS  Google Scholar 

  49. Riely CA, Cotlier E, Jensen PS, Klatskin G (1979) Arteriohepatic dysplasia: a benign syndrome of intrahepatic cholestasis with multiple organ involvement. Ann Intern Med 91:520–527

    CAS  Google Scholar 

  50. Onoyama I, Nakayama K, Nakayama KI et al (2011) Fbxw7 regulates lipid metabolism and cell fate decisions in the mouse liver Find the latest version: Fbxw7 regulates lipid metabolism and cell fate decisions in the mouse liver. J Clin Invest 121:342–354

    CAS  Google Scholar 

  51. Walter TJ, Vanderpool C, Cast AE, Huppert SS (2014) Intrahepatic bile duct regeneration in mice does not require Hnf6 or notch signaling through Rbpj. Am J Pathol 184:1479–1488

    CAS  Google Scholar 

  52. Suckling RJ, Korona B, Whiteman P et al (2017) Structural and functional dissection of the interplay between lipid and Notch binding by human Notch ligands. EMBO J 36:2204–2215

    CAS  Google Scholar 

  53. McCright B, Gao X, Shen L et al (2001) Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128:491–502

    CAS  Google Scholar 

  54. Zhang H, Wang L, Wong EYM et al (2017) An Eya1-Notch axis specifies bipotential epibranchial differentiation in mammalian craniofacial morphogenesis. elife 6:e30126

    Google Scholar 

  55. McCright B, Lozier J, Gridley T (2006) Generation of new Notch2 mutant alleles. Genesis 44:29–33

    CAS  Google Scholar 

  56. Falix FA, Weeda VB, Labruyere WT et al (2014) Hepatic Notch2 deficiency leads to bile duct agenesis perinatally and secondary bile duct formation after weaning. Dev Biol 396:201–213

    CAS  Google Scholar 

  57. Yanger K, Zong Y, Maggs LR et al (2013) Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev 27:719–724

    CAS  Google Scholar 

  58. Besseyrias V, Fiorini E, Strobl LJ et al (2007) Hierarchy of Notch-Delta interactions promoting T cell lineage commitment and maturation. J Exp Med 204:331–343

    Google Scholar 

  59. James a C, Szot JO, Iyer K et al (2014) Notch4 reveals a novel mechanism regulating Notch signal transduction. Biochim Biophys Acta 1843:1272–1284

    Google Scholar 

  60. Jeliazkova P, Jörs S, Lee M et al (2013) Canonical Notch2 signaling determines biliary cell fates of embryonic hepatoblasts and adult hepatocytes independent of Hes1. Hepatology 57:2469–2479

    CAS  Google Scholar 

  61. Nakhai H, Siveke JT, Klein B et al (2008) Conditional ablation of Notch signaling in pancreatic development. Development 135:2757–2765

    CAS  Google Scholar 

  62. Postic C, Shiota M, Niswender KD et al (1999) Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 274:305–315

    CAS  Google Scholar 

  63. Vanderpool C, Sparks EE, Huppert KA et al (2012) Genetic interactions between hepatocyte nuclear factor-6 and Notch signaling regulate mouse intrahepatic bile duct development in vivo. Hepatology 55:233–243

    Google Scholar 

  64. Han H, Tanigaki K, Yamamoto N et al (2002) Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 14:637–645

    CAS  Google Scholar 

  65. Postic C, Magnuson MA (2000) DNA excision in liver by an albumin-Cre transgene occurs progressively with age. Genesis 26:149–150

    CAS  Google Scholar 

  66. Lee CS, Sund NJ, Behr R et al (2005) Foxa2 is required for the differentiation of pancreatic α-cells. Dev Biol 278:484–495

    CAS  Google Scholar 

  67. Malato Y, Naqvi S, Schürmann N et al (2011) Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Invest 121:4850–4860

    CAS  Google Scholar 

  68. Fryer CJ, White JB, Jones KA (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16:509–520

    CAS  Google Scholar 

  69. Gupta-Rossi N, Le Bail O, Gonen H et al (2001) Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem 276:34371–34378

    CAS  Google Scholar 

  70. Öberg C, Li J, Pauley A et al (2001) The notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem 276:35847–35853

    Google Scholar 

  71. Wu G, Lyapina S, Das I et al (2001) SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Mol Cell Biol 21:7403–7415

    CAS  Google Scholar 

  72. Ishibashi M, Ang SL, Shiota K et al (1995) Targeted disruption of mammalian hairy and enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev 9:3136–3148

    CAS  Google Scholar 

  73. Kodama Y, Hijikata M, Kageyama R et al (2004) The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology 127:1775–1786

    CAS  Google Scholar 

  74. Poncy A, Antoniou A, Cordi S et al (2015) Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev Biol 404:136–148

    CAS  Google Scholar 

  75. Humphreys R, Zheng W, Prince LS et al (2012) Cranial neural crest ablation of Jagged1 recapitulates the craniofacial phenotype of Alagille syndrome patients. Hum Mol Genet 21:1374–1383

    CAS  Google Scholar 

  76. Hill CR, Yuasa M, Schoenecker J, Goudy SL (2014) Jagged1 is essential for osteoblast development during maxillary ossification. Bone 62:10–21

    CAS  Google Scholar 

  77. Teng CS, Yen H-Y, Barske L et al (2017) Requirement for Jagged1-Notch2 signaling in patterning the bones of the mouse and human middle ear. Sci Rep 7:2497

    Google Scholar 

  78. Benedito R, Roca C, Sörensen I et al (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135

    CAS  Google Scholar 

  79. High FA, Lu MM, Pear WS et al (2008) Endothelial expression of the Notch ligand Jagged1 is required for vascular smooth muscle development. Proc Natl Acad Sci U S A 105:1955–1959

    CAS  Google Scholar 

  80. Scheppke L, Murphy EA, Zarpellon A et al (2012) Notch promotes vascular maturation by inducing integrin-mediated smooth muscle cell adhesion to the endothelial basement membrane. Blood 119:2149–2158

    CAS  Google Scholar 

  81. Hofmann JJ, Briot A, Enciso J et al (2012) Endothelial deletion of murine Jag1 leads to valve calcification and congenital heart defects associated with Alagille syndrome. Development 139:4449–4460

    CAS  Google Scholar 

  82. Kruepunga N, Hakvoort TBM, Hikspoors JPJM et al (2018) Anatomy of rodent and human livers: what are the differences? Biochim Biophys Acta Mol basis Dis. https://doi.org/10.1016/j.bbadis.2018.05.019

  83. de Vries Y, von Meijenfeldt FA, Porte RJ (2018) Post-transplant cholangiopathy: classification, pathogenesis, and preventive strategies. Biochim Biophys Acta Mol basis Dis 1864:1507–1515

    Google Scholar 

  84. Tian Y, Rüdiger HA, Jochum W, Clavien P-A (2002) Comparison of arterialized and nonarterialized orthotopic liver transplantation in mice: prowess or relevant model? Transplantation 74:1242–1246

    Google Scholar 

  85. Oldani G, Lacotte S, Orci LA et al (2016) Efficient nonarterialized mouse liver transplantation using 3-dimensional-printed instruments. Liver Transplant 22:1688–1696

    Google Scholar 

  86. Rapp JB, Bellah RD, Maya C et al (2017) Giant hepatic regenerative nodules in Alagille syndrome. Pediatr Radiol 47:197–204

    Google Scholar 

  87. Rougemont A-L, Alvarez F, McLin VA et al (2015) Bile ducts in regenerative liver nodules of alagille patients are not due to genetic mosaicism. J Pediatr Gastroenterol Nutr 61:1

    Google Scholar 

  88. Libbrecht L, Spinner NB, Moore EC et al (2005) Peripheral bile duct paucity and cholestasis in the liver of a patient with Alagille syndrome: Further evidence supporting a lack of postnatal bile duct branching and elongation. Am J Surg Pathol 29:820–826

    Google Scholar 

  89. Kahn EI, Daum F, Markowitz J et al (1983) Arteriohepatic dysplasia. II. Hepatobiliary morphology. Hepatology 3:77–84

    CAS  Google Scholar 

  90. Tanimizu N, Miyajima A (2004) Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci 117:3165–3174

    CAS  Google Scholar 

  91. Li J, Dawson PA (2018) Animal models to study bile acid metabolism. Biochim Biophys Acta Mol basis Dis. https://doi.org/10.1016/j.bbadis.2018.05.011

  92. Hindley CJ, Cordero-Espinoza L, Huch M (2016) Organoids from adult liver and pancreas: stem cell biology and biomedical utility. Dev Biol 420:251–261

    CAS  Google Scholar 

  93. Halpern KB, Shenhav R, Matcovitch-Natan O et al (2017) Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542:352–356

    CAS  Google Scholar 

  94. Alemany A, Florescu M, Baron CS et al (2018) Whole-organism clone tracing using single-cell sequencing. Nature 556:108–112

    CAS  Google Scholar 

  95. Kester L, van Oudenaarden A (2018) Single-cell transcriptomics meets lineage tracing. Cell Stem Cell 23:166–179

    CAS  Google Scholar 

  96. Lee JH, Daugharthy ER, Scheiman J et al (2015) Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc 10:442–458

    CAS  Google Scholar 

  97. Sparks EE, Huppert KA, Brown MA et al (2010) Notch signaling regulates formation of the three-dimensional architecture of intrahepatic bile ducts in mice. Hepatology 51:1391–1400

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Mattias Karlén for the illustrations to this chapter. Work in the authors’ laboratories is supported by the Swedish Research Council, the Swedish Cancer Foundation and ICMC (Integrated CardioMetabolic Center) (UL) and the Center of Innovative Medicine (CIMED) Grant, the Knut and Alice Wallenberg Foundation (KAW), the Swedish Research Council (Vetenskapsrådet), Karolinska Institutet, the Daniel Alagille Award, and the Heart and Lung Foundation (ERA). One project in ERA lab is funded by ModeRNA. The funders have no role in the design or interpretation of the work in either laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urban Lendahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Van Hul, N., Lendahl, U., Andersson, E.R. (2019). Mouse Models for Diseases in the Cholangiocyte Lineage. In: Vinken, M. (eds) Experimental Cholestasis Research. Methods in Molecular Biology, vol 1981. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9420-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9420-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9419-9

  • Online ISBN: 978-1-4939-9420-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics