Skip to main content

In Vitro Blood-Brain Barrier Functional Assays in a Human iPSC-Based Model

  • Protocol
  • First Online:
Cell Culture Techniques

Part of the book series: Neuromethods ((NM,volume 145))

  • 1417 Accesses

Abstract

The blood-brain barrier (BBB) is a key biological interface that controls trafficking between the bloodstream and brain to maintain neural homeostasis. To carry out this role, the BBB exhibits several specialized properties, including limited permeability and active transporter function. These properties are often evaluated within in vitro BBB models, which can be utilized for high-throughput screening applications such as drug discovery. Here, we detail several common methods used to qualify in vitro BBB models, including measurement of transendothelial electrical resistance (TEER), determination of permeability coefficients (Pe) for small molecules, and assessment of efflux transporter activity. We describe these methods in the context of BBB endothelial cells derived from human-induced pluripotent stem cells (iPSCs), a model commonly employed in our research group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  Google Scholar 

  2. Daneman R, Prat A (2015) The blood–brain barrier. Cold Spring Harb Perspect Biol 7:a020412

    Article  Google Scholar 

  3. Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19:1584–1596

    Article  CAS  Google Scholar 

  4. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    Article  CAS  Google Scholar 

  5. Montagne A, Nation DA, Pa J et al (2016) Brain imaging of neurovascular dysfunction in Alzheimer’s disease. Acta Neuropathol (Berl) 131:687–707

    Article  CAS  Google Scholar 

  6. van de Haar HJ, Burgmans S, Jansen JFA et al (2016) Blood-brain barrier leakage in patients with early Alzheimer disease. Radiology 281:527–535

    Article  Google Scholar 

  7. Yates PA, Desmond PM, Phal PM et al (2014) Incidence of cerebral microbleeds in preclinical Alzheimer disease. Neurology 82:1266–1273

    Article  CAS  Google Scholar 

  8. Uetani H, Hirai T, Hashimoto M et al (2013) Prevalence and topography of small hypointense foci suggesting microbleeds on 3T susceptibility-weighted imaging in various types of dementia. Am J Neuroradiol 34:984–989

    Article  CAS  Google Scholar 

  9. Simpson IA, Chundu KR, Davies-Hill T et al (1994) Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Ann Neurol 35:546–551

    Article  CAS  Google Scholar 

  10. Jagust WJ, Seab JP, Huesman RH et al (1991) Diminished glucose transport in Alzheimer’s disease: dynamic PET studies. J Cereb Blood Flow Metab 11:323–330

    Article  CAS  Google Scholar 

  11. Hunt A, Schönknecht P, Henze M et al (2007) Reduced cerebral glucose metabolism in patients at risk for Alzheimer’s disease. Psychiatry Res Neuroimaging 155:147–154

    Article  CAS  Google Scholar 

  12. Niwa K, Kazama K, Younkin SG et al (2002) Alterations in cerebral blood flow and glucose utilization in mice overexpressing the amyloid precursor protein. Neurobiol Dis 9:61–68

    Article  CAS  Google Scholar 

  13. Deo AK, Borson S, Link JM et al (2014) Activity of P-glycoprotein, a β-amyloid transporter at the blood-brain barrier, is compromised in patients with mild Alzheimer disease. J Nucl Med 55:1106–1111

    Article  CAS  Google Scholar 

  14. van Assema DM, Lubberink M et al (2012) Blood–brain barrier P-glycoprotein function in Alzheimer’s disease. Brain 135:181–189

    Article  Google Scholar 

  15. Kortekaas R, Leenders KL, van Oostrom JCH et al (2005) Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57:176–179

    Article  CAS  Google Scholar 

  16. Naik P, Cucullo L (2012) In vitro blood–brain barrier models: current and perspective technologies. J Pharm Sci 101:1337–1354

    Article  CAS  Google Scholar 

  17. Dehouck M-P, Méresse S, Delorme P et al (1990) An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J Neurochem 54:1798–1801

    Article  CAS  Google Scholar 

  18. Franke H, Galla H-J, Beuckmann CT (1999) An improved low-permeability in vitro-model of the blood–brain barrier: transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res 818:65–71

    Article  CAS  Google Scholar 

  19. Patabendige A, Skinner RA, Abbott NJ (2013) Establishment of a simplified in vitro porcine blood–brain barrier model with high transendothelial electrical resistance. Brain Res 1521:1–15

    Article  CAS  Google Scholar 

  20. Al Ahmad A, Taboada CB, Gassmann M et al (2011) Astrocytes and pericytes differentially modulate blood–brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab 31:693–705

    Article  Google Scholar 

  21. Al Ahmad A, Gassmann M, Ogunshola OO (2009) Maintaining blood–brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J Cell Physiol 218:612–622

    Article  Google Scholar 

  22. Song L, Pachter JS (2003) Culture of murine brain microvascular endothelial cells that maintain expression and cytoskeletal association of tight junction-associated proteins. In Vitro Cell Dev Biol Anim 39:313–320

    Article  CAS  Google Scholar 

  23. Smith QR, Rapoport SI (1986) Cerebrovascular permeability coefficients to sodium, potassium, and chloride. J Neurochem 46:1732–1742

    Article  CAS  Google Scholar 

  24. Helms HC, Abbott NJ, Burek M et al (2016) In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 36:862–890

    Article  CAS  Google Scholar 

  25. Pardridge WM (1998) CNS drug design based on principles of blood-brain barrier transport. J Neurochem 70:1781–1792

    Article  CAS  Google Scholar 

  26. Syvänen S, Lindhe Ö, Palner M et al (2009) Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos 37:635–643

    Article  Google Scholar 

  27. Weksler BB, Subileau EA, Perrière N et al (2005) Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1874

    Article  CAS  Google Scholar 

  28. Lippmann ES, Azarin SM, Kay JE et al (2012) Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 30:783–791

    Article  CAS  Google Scholar 

  29. Lippmann ES, Al-Ahmad A, Azarin SM et al (2014) A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci Rep 4:4160

    Article  Google Scholar 

  30. Wilson HK, Canfield SG, Hjortness MK et al (2015) Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells. Fluids Barriers CNS 12:13

    Article  Google Scholar 

  31. Hollmann EK, Bailey AK, Potharazu AV et al (2017) Accelerated differentiation of human induced pluripotent stem cells to blood–brain barrier endothelial cells. Fluids Barriers CNS 14:9

    Article  Google Scholar 

Download references

Acknowledgments

Our research efforts in this area are supported by a NARSAD Young Investigator Award from the Brain and Behavior Research Foundation (ESL) and grant A20170945 from the Alzheimer’s Disease Research Program through the BrightFocus Foundation (ESL). EHN is supported by a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethan S. Lippmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Neal, E.H., Shi, Y., Lippmann, E.S. (2019). In Vitro Blood-Brain Barrier Functional Assays in a Human iPSC-Based Model. In: Aschner, M., Costa, L. (eds) Cell Culture Techniques. Neuromethods, vol 145. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9228-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9228-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9227-0

  • Online ISBN: 978-1-4939-9228-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics