Advertisement

Dynamic Network Modeling of Stem Cell Metabolism

  • Fangzhou Shen
  • Camden Cheek
  • Sriram ChandrasekaranEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1975)

Abstract

Stem cell metabolism is intrinsically tied to stem cell pluripotency and function. Yet, understanding metabolic rewiring in stem cells has been challenging due to the complex and highly interconnected nature of the metabolic network. Genome-scale metabolic network models are increasingly used to holistically model the metabolic behavior of various cells and tissues using transcriptomics data. However, these powerful approaches that model steady-state behavior have limited utility for studying dynamic stem cell state transitions. To address this complexity, we recently developed the dynamic flux activity (DFA) approach; DFA is a genome-scale modeling approach that uses time-course metabolic data to predict metabolic flux rewiring. This protocol outlines the steps for modeling steady-state and dynamic metabolic behavior using transcriptomics and time-course metabolomics data, respectively. Using data from naive and primed pluripotent stem cells, we demonstrate how we can use genome-scale modeling and DFA to comprehensively characterize the metabolic differences between these states.

Key words

Dynamic network modeling Genome-scale metabolic models (GEMs) Constraint-based modeling Flux balance analysis (FBA) Stem cells Metabolism Metabolomics 

References

  1. 1.
    Brunk E, Sahoo S, Zielinski DC et al (2018) Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat Biotechnol 36:272CrossRefGoogle Scholar
  2. 2.
    O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161:971–987.  https://doi.org/10.1016/j.cell.2015.05.019CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Feist AM, Herrgard MJ, Thiele I et al (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143.  https://doi.org/10.1038/nrmicro1949CrossRefPubMedGoogle Scholar
  4. 4.
    Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15:107–120.  https://doi.org/10.1038/nrg3643CrossRefPubMedGoogle Scholar
  5. 5.
    Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10:291–305.  https://doi.org/10.1038/nrmicro2737CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Folger O, Jerby L, Frezza C et al (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501.  https://doi.org/10.1038/msb.2011.35CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Frezza C, Zheng L, Folger O et al (2011) Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477:225–U132.  https://doi.org/10.1038/nature10363CrossRefPubMedGoogle Scholar
  8. 8.
    Uhlen M, Fagerberg L, Hallstrom BM et al (2015) Tissue-based map of the human proteome. Science 80:347.  https://doi.org/10.1126/science.1260419CrossRefGoogle Scholar
  9. 9.
    Shlomi T, Cabili MN, Herrgard MJ et al (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26:1003–1010.  https://doi.org/10.1038/nbt.1487CrossRefPubMedGoogle Scholar
  10. 10.
    Chandrasekaran S, Zhang J, Sun Z et al (2017) Comprehensive mapping of pluripotent stem cell metabolism using dynamic genome-scale network modeling. Cell Rep 21:2965–2977.  https://doi.org/10.1016/J.CELREP.2017.07.048CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Becker SA, Feist AM, Mo ML et al (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738.  https://doi.org/10.1038/nprot.2007.99CrossRefPubMedGoogle Scholar
  12. 12.
    Schellenberger J, Que R, Fleming RMT et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6:1290–1307.  https://doi.org/10.1038/nprot.2011.308CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ebrahim A, Lerman JA, Palsson BO, Hyduke DR (2013) COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst Biol 7:74.  https://doi.org/10.1186/1752-0509-7-74CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Duarte NC, Becker SA, Jamshidi N et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104:1777–1782.  https://doi.org/10.1073/pnas.0610772104CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    King ZA, Lu J, Drager A et al (2016) BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res 44:D515–D522.  https://doi.org/10.1093/nar/gkv1049CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang J, Ratanasirintrawoot S, Chandrasekaran S et al (2016) LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell 19:66–80.  https://doi.org/10.1016/j.stem.2016.05.009CrossRefPubMedGoogle Scholar
  17. 17.
    Gunawardena J (2014) Time-scale separation—Michaelis and Menten’s old idea, still bearing fruit. FEBS J 281:473–488.  https://doi.org/10.1111/febs.12532CrossRefPubMedGoogle Scholar
  18. 18.
    Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496.  https://doi.org/10.1016/j.copbio.2003.08.001CrossRefPubMedGoogle Scholar
  19. 19.
    Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28:245–248.  https://doi.org/10.1038/nbt.1614CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420:186–189.  https://doi.org/10.1038/nature01149CrossRefPubMedGoogle Scholar
  21. 21.
    Feist AM, Palsson BO (2016) What do cells actually want? Genome Biol 17:110.  https://doi.org/10.1186/s13059-016-0983-3CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Reed JL (2012) Shrinking the metabolic solution space using experimental datasets. PLoS Comput Biol 8:e1002662.  https://doi.org/10.1371/journal.pcbi.1002662CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zur H, Ruppin E, Shlomi T (2010) iMAT: an integrative metabolic analysis tool. Bioinformatics 26:3140–3142.  https://doi.org/10.1093/bioinformatics/btq602CrossRefPubMedGoogle Scholar
  24. 24.
    Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107:17845–17850.  https://doi.org/10.1073/pnas.1005139107CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Xia JG, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res 43:W251–W257.  https://doi.org/10.1093/nar/gkv380CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wishart DS, Feunang YD, Marcu A et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617.  https://doi.org/10.1093/nar/gkx1089CrossRefPubMedGoogle Scholar
  27. 27.
    Kanehisa M, Furumichi M, Tanabe M et al (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361.  https://doi.org/10.1093/nar/gkw1092CrossRefPubMedGoogle Scholar
  28. 28.
    Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213.  https://doi.org/10.1093/nar/gkv951CrossRefPubMedGoogle Scholar
  29. 29.
    Hastings J, Owen G, Dekker A et al (2016) ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res 44:D1214–D1219.  https://doi.org/10.1093/nar/gkv1031CrossRefPubMedGoogle Scholar
  30. 30.
    Smith CA, O’Maille G, Want EJ et al (2005) METLIN—a metabolite mass spectral database. Ther Drug Monit 27:747–751.  https://doi.org/10.1097/01.ftd.0000179845.53213.39CrossRefPubMedGoogle Scholar
  31. 31.
    Hucka M, Finney A, Sauro HM et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531.  https://doi.org/10.1093/bioinformatics/btg015CrossRefPubMedGoogle Scholar
  32. 32.
    Raghevendran V, Gombert AK, Christensen B et al (2004) Phenotypic characterization of glucose repression mutants ofSaccharomyces cerevisiae using experiments with13C-labelled glucose. Yeast 21:769–779.  https://doi.org/10.1002/yea.1136CrossRefPubMedGoogle Scholar
  33. 33.
    Sabra W, Bommareddy RR, Maheshwari G et al (2017) Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: insights through transcriptome and fluxome analyses. Microb Cell Factories 16:78.  https://doi.org/10.1186/s12934-017-0690-0CrossRefGoogle Scholar
  34. 34.
    Lewis NE, Hixson KK, Conrad TM et al (2010) Omic data from evolved E-coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 6:390.  https://doi.org/10.1038/msb.2010.47CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fangzhou Shen
    • 1
  • Camden Cheek
    • 1
  • Sriram Chandrasekaran
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations