Skip to main content

Investigating Cell Fate Decisions with ICGS Analysis of Single Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1975))

Abstract

Advances in single-cell transcriptome profiling have contributed to new insights into the cellular states and underlying regulatory networks that govern lineage commitment. Such cell states include multipotent progenitors that can manifest as mixed-lineage patterns of gene expression at a single-cell level. Multipotent and other self-renewing progenitors are often difficult to isolate and characterized by subtle transcriptional differences that are challenging to define. This chapter examines the application of newly developed analytical tools to define heterogeneity in diverse stem cell and multipotent progenitor populations from single-cell RNA-Seq data. In addition to the methodology and output of these approaches, we explore their application to diverse single-cell technologies (e.g., Fluidigm, Drop-Seq, 10× Genomics Chromium) and their usability by computational and non-computational biologists. We focus specifically on the use of one tool, called Iterative Clustering and Guide-gene Selection (ICGS), which has been shown to uncover novel committed, transitional, and metastable progenitor cell states. As a component of the AltAnalyze toolkit, ICGS provides advanced methods to evaluate cellular heterogeneity in combination with regulatory prediction, pathway, and alternative splicing analyses. We walk through the individual steps required to perform these analyses in hematopoietic and embryonic kidney progenitor datasets in both graphical user and command-line interfaces. By the end of this chapter, users should be able to analyze their own single-cell RNA-Seq data and obtain deeper insights into the regulatory biology of the discovered cell states.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, Desai TJ, Krasnow MA, Quake SR (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509(7500):371–375. Epub 2014/4/18. https://doi.org/10.1038/nature13173

    Article  CAS  PubMed Central  Google Scholar 

  2. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386. Epub 2014/3/25. https://doi.org/10.1038/nbt.2859

    Article  CAS  PubMed Central  Google Scholar 

  3. Olsson A, Venkatasubramanian M, Chaudhri VK, Aronow BJ, Salomonis N, Singh H, Grimes HL (2016) Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537(7622):698–702. Epub 2016/9/1. https://doi.org/10.1038/nature19348

    Article  CAS  PubMed Central  Google Scholar 

  4. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, Borm LE, Stott SR, Toledo EM, Villaescusa JC, Lonnerberg P, Ryge J, Barker RA, Arenas E, Linnarsson S (2016) Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167(2):566–80.e19. Epub 2016/10/8. https://doi.org/10.1016/j.cell.2016.09.027

    Article  CAS  PubMed Central  Google Scholar 

  5. Treutlein B, Lee QY, Camp JG, Mall M, Koh W, Shariati SA, Sim S, Neff NF, Skotheim JM, Wernig M, Quake SR (2016) Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature 534(7607):391–395. Epub 2016/6/10. https://doi.org/10.1038/nature18323

    Article  CAS  PubMed Central  Google Scholar 

  6. Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A, Zheng S, Lazo S, Jardine L, Dixon D, Stephenson E, Nilsson E, Grundberg I, McDonald D, Filby A, Li W, De Jager PL, Rozenblatt-Rosen O, Lane AA, Haniffa M, Regev A, Hacohen N (2017) Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356(6335):eaah4573. https://doi.org/10.1126/science.aah4573

    Article  CAS  PubMed Central  Google Scholar 

  7. Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M, Adiconis X, Levin JZ, Nemesh J, Goldman M, McCarroll SA, Cepko CL, Regev A, Sanes JR (2016) Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166(5):1308–23.e30. https://doi.org/10.1016/j.cell.2016.07.054

    Article  CAS  PubMed Central  Google Scholar 

  8. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg J, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049. https://doi.org/10.1101/065912

    Article  CAS  PubMed Central  Google Scholar 

  9. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214. Epub 2015/5/23. https://doi.org/10.1016/j.cell.2015.05.002

    Article  CAS  PubMed Central  Google Scholar 

  10. Adamson B, Norman TM, Jost M, Cho MY, Nunez JK, Chen Y, Villalta JE, Gilbert LA, Horlbeck MA, Hein MY, Pak RA, Gray AN, Gross CA, Dixit A, Parnas O, Regev A, Weissman JS (2016) A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167(7):1867–82.e21. https://doi.org/10.1016/j.cell.2016.11.048

    Article  CAS  PubMed Central  Google Scholar 

  11. Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, Marjanovic ND, Dionne D, Burks T, Raychowdhury R, Adamson B, Norman TM, Lander ES, Weissman JS, Friedman N, Regev A (2016) Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167(7):1853–66.e17. https://doi.org/10.1016/j.cell.2016.11.038

    Article  CAS  PubMed Central  Google Scholar 

  12. Cordero P, Stuart JM (2017) Tracing co-regulatory network dynamics in noisy, single-cell transcriptome trajectories. Pac Symp Biocomput 22:576–587. https://doi.org/10.1142/9789813207813_0053

    Article  Google Scholar 

  13. Ji Z, Ji H (2016) TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res 44(13):e117. https://doi.org/10.1093/nar/gkw430

    Article  CAS  PubMed Central  Google Scholar 

  14. Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, Clevers H, van Oudenaarden A (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525(7568):251–255. Epub 2015/8/20. https://doi.org/10.1038/nature14966

    Article  CAS  Google Scholar 

  15. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, Natarajan KN, Reik W, Barahona M, Green AR, Hemberg M (2017) SC3: consensus clustering of single-cell RNA-seq data. Nat Methods 14(5):483–486. https://doi.org/10.1038/nmeth.4236

    Article  CAS  PubMed Central  Google Scholar 

  16. Jiang L, Chen H, Pinello L, Yuan GC (2016) GiniClust: detecting rare cell types from single-cell gene expression data with Gini index. Genome Biol 17(1):144. https://doi.org/10.1186/s13059-016-1010-4

    Article  CAS  PubMed Central  Google Scholar 

  17. Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, Teichmann SA, Marioni JC, Stegle O (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol 33(2):155–160. Epub 2015/1/20. https://doi.org/10.1038/nbt.3102

    Article  CAS  PubMed Central  Google Scholar 

  18. Barron M, Li J (2016) Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data. Sci Rep 6:33892. https://doi.org/10.1038/srep33892

    Article  CAS  PubMed Central  Google Scholar 

  19. Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33(5):495–502. Epub 2015/4/14. https://doi.org/10.1038/nbt.3192

    Article  CAS  PubMed Central  Google Scholar 

  20. Grun D, Muraro MJ, Boisset JC, Wiebrands K, Lyubimova A, Dharmadhikari G, van den Born M, van Es J, Jansen E, Clevers H, de Koning EJ, van Oudenaarden A (2016) De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19(2):266–277. Epub 2016/6/28. https://doi.org/10.1016/j.stem.2016.05.010

    Article  CAS  PubMed Central  Google Scholar 

  21. Guo M, Bao EL, Wagner M, Whitsett JA, Xu Y (2017) SLICE: determining cell differentiation and lineage based on single cell entropy. Nucleic Acids Res 45(7):e54. https://doi.org/10.1093/nar/gkw1278

    Article  CAS  Google Scholar 

  22. Guo M, Wang H, Potter SS, Whitsett JA, Xu Y (2015) SINCERA: a pipeline for single-cell RNA-Seq profiling analysis. PLoS Comput Biol 11(11):e1004575. Epub 2015/11/26. https://doi.org/10.1371/journal.pcbi.1004575

    Article  CAS  PubMed Central  Google Scholar 

  23. Brunskill EW, Park JS, Chung E, Chen F, Magella B, Potter SS (2014) Single cell dissection of early kidney development: multilineage priming. Development 141(15):3093–3101. Epub 2014/7/24. https://doi.org/10.1242/dev.110601

    Article  CAS  PubMed Central  Google Scholar 

  24. Magella B, Adam M, Potter AS, Venkatasubramanian M, Chetal K, Hay SB, Salomonis N, Potter SS (2018) Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf. Dev Biol 434:36–47. https://doi.org/10.1016/j.ydbio.2017.11.006

    Article  CAS  Google Scholar 

  25. Meyer SE, Qin T, Muench DE, Masuda K, Venkatasubramanian M, Orr E, Suarez L, Gore SD, Delwel R, Paietta E, Tallman MS, Fernandez H, Melnick A, Le Beau MM, Kogan S, Salomonis N, Figueroa ME, Grimes HL (2016) DNMT3A haploinsufficiency transforms FLT3ITD myeloproliferative disease into a rapid, spontaneous, and fully penetrant acute myeloid leukemia. Cancer Discov 6(5):501–515. Epub 2016/3/27. https://doi.org/10.1158/2159-8290.CD-16-0008

    Article  CAS  PubMed Central  Google Scholar 

  26. Yanez A, Coetzee SG, Olsson A, Muench DE, Berman BP, Hazelett DJ, Salomonis N, Grimes HL, Goodridge HS (2017) Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently produce functionally distinct monocytes. Immunity 47(5):890–902.e4. https://doi.org/10.1016/j.immuni.2017.10.021

    Article  CAS  PubMed Central  Google Scholar 

  27. Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, Hirche C, Lutz C, Buss EC, Nowak D, Boch T, Hofmann WK, Ho AD, Huber W, Trumpp A, Essers MA, Steinmetz LM (2017) Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 19(4):271–281. https://doi.org/10.1038/ncb3493

    Article  CAS  PubMed Central  Google Scholar 

  28. Pavlicev M, Wagner GP, Chavan AR, Owens K, Maziarz J, Dunn-Fletcher C, Kallapur SG, Muglia L, Jones H (2017) Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface. Genome Res 27(3):349–361. Epub 2017/2/9. https://doi.org/10.1101/gr.207597.116

    Article  CAS  PubMed Central  Google Scholar 

  29. Lim CY (2017) Understanding transcriptional regulation through computational analysis of single-cell transcriptomics. University of Cambridge, Cambridge

    Google Scholar 

  30. van der Laan MJ, Pollard KS (2003) A new algorithm for hybrid hierarchical clustering with visualization and the bootstrap. J Stat Plan Inference 117(2):275–303

    Article  Google Scholar 

  31. Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34(5):525–527. Epub 2016/4/5. https://doi.org/10.1038/nbt.3519

    Article  CAS  Google Scholar 

  32. Zambon AC, Gaj S, Ho I, Hanspers K, Vranizan K, Evelo CT, Conklin BR, Pico AR, Salomonis N (2012) GO-Elite: a flexible solution for pathway and ontology over-representation. Bioinformatics 28(16):2209–2210. Epub 2012/6/30. https://doi.org/10.1093/bioinformatics/bts366

    Article  CAS  PubMed Central  Google Scholar 

  33. McLendon PM, Davis G, Gulick J, Singh SR, Xu N, Salomonis N, Molkentin JD, Robbins J (2017) An unbiased high-throughput screen to identify novel effectors that impact on cardiomyocyte aggregate levels. Circ Res 121(6):604–616. https://doi.org/10.1161/CIRCRESAHA.117.310945

    Article  CAS  PubMed Central  Google Scholar 

  34. Machlus KR, Italiano JE Jr (2013) The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol 201(6):785–796. https://doi.org/10.1083/jcb.201304054

    Article  CAS  PubMed Central  Google Scholar 

  35. Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L, Thalheimer FB, Pastor-Flores D, Roma LP, Renders S, Zeisberger P, Przybylla A, Schonberger K, Scognamiglio R, Altamura S, Florian CM, Fawaz M, Vonficht D, Tesio M, Collier P, Pavlinic D, Geiger H, Schroeder T, Benes V, Dick TP, Rieger MA, Stegle O, Trumpp A (2017) Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169(5):807–23.e19. https://doi.org/10.1016/j.cell.2017.04.018

    Article  CAS  Google Scholar 

  36. Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, Sanchez Castillo M, Oedekoven CA, Diamanti E, Schulte R, Ponting CP, Voet T, Caldas C, Stingl J, Green AR, Theis FJ, Gottgens B (2015) Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16(6):712–724. https://doi.org/10.1016/j.stem.2015.04.004

    Article  CAS  PubMed Central  Google Scholar 

  37. Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J, Huang J, Li M, Wu X, Wen L, Lao K, Li R, Qiao J, Tang F (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20(9):1131–1139. Epub 2013/8/13. https://doi.org/10.1038/nsmb.2660

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Salomonis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Salomonis, N. (2019). Investigating Cell Fate Decisions with ICGS Analysis of Single Cells. In: Cahan, P. (eds) Computational Stem Cell Biology. Methods in Molecular Biology, vol 1975. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9224-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9224-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9223-2

  • Online ISBN: 978-1-4939-9224-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics